Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нитросоединения парафинов

    Введение нитрогруппы в боковую цепь ароматических углеводородов производится примерно в тех же условиях, что и нитрование парафиновых и алициклических углеводородов. Нитрование ароматических углеводородов в боковую цепь можно производить по методу Коновалова при этом получаются преимущественно а-нитросоединения. Так, при действии разбавленной азотной кислоты на пропилбензол в запаянных трубках при 100—108° образуется I-нитро-1-фенилпро-пан с выходом около 90%  [c.54]


    Нитросоединения могут быть отделены от не вошедших в реакцию исходных продуктов различными способами. Нитросоединения парафиновых углеводородов можно отделить при помощи селективных растворителей, как метанол, этанол, нитрометан и т. п. [c.311]

    Эта реакция не ограничивается только возможностью получения нитросоединений парафинового ряда, но дает обший метод введения нитрогруппы в молекулы алифатических соединений. [c.314]

    Двуокись азота и ее димер легко присоединяются к непредельным соединениям и потому применяются для получения нитросоединений из олефинов (стр. 64), а также находят широкое применение при парофазном нитровании парафиновых углеводородов (стр. 16). Однако для нитрования ароматических систем (стр. 51) окислы азота применяются пока еще в ограниченных масштабах. [c.11]

    В промышленности нитросоединения получают главным образом на основе парафиновых и ароматических углеводородов. Реакции нитрования насыщенных углеводородов протекают по радикальному и радикально-цепному механизмам, а введение нитрогруппы в ароматическое кольцо, как правило, происходит по ионному механизму путем электрофильного замещения атома водорода. [c.462]

    Метод обработки разведенной азотной кислотой при высокой температуре дал возможность М. И. Коновалову получить нитросоединения парафиновых углеводородов. [c.51]

    Нитрование парообразных парафинов. В последние годы (начиная с 1936 г.) американскими химиками опубликовано несколько работ, посвященных вопросу нитрования насыщенных углеводородов (метан, этан, пропан, бутан, пентан и некоторые изомеры последних трех). Нитрование углеводородов, содержащих меньше пяти атомов углерода, раньше никем не изучалось между тем соответствующие нитросоединения могут представлять значительный интерес в случае нахождения дешевого способа их производства вследствие наличия больших количеств дешевых простейших парафиновых углеводородов и возможности широкого применения таких нитропродуктов. [c.46]

    Действие солей азотистой кис., от ы. Наиболее обычным способом синтеза нитросоединений парафинового ряда является действие солей азотистой кислоты на галоидные алкилы (В. Мейер, 1872) или сложные эфиры серной кислоты  [c.267]

    Нитросоединения парафинового и нафтенового рядов вследствие их большой реакционной способности получили широкое применение. Реакция нитрования насыщенных углеводородов была открыта М. И. Коноваловым в конце прошлого столетия и с тех пор являлась предметом исследований С. С. Наметкина, А. И. Титова, П. П. Шорыгина и А. В. Топчиева. [c.5]


    Нитрование низщих и средних парафиновых углеводородов может легко и гладко осуществляться в настоящее время в промышленном масштабе. Поскольку нитропарафины обладают по меньшей мере такой же реакционной способностью, как ароматические нитросоединения, хотя и в других направлениях, этот путь открывает весьма широкие возможности проведения важных для промышленности синтезов на основе алифатических соединений. [c.11]

    Нитросоединения, получаемые нитрованием при высоких температурах газообразных парафиновых углеводородов, могут быть разделены на отдельные чистые изомеры путем ректификации на хорошо действующих ректификационных колоннах. Однако эта возможность исключена в случае высокомолекулярных нитропроизводных, так как точки кипения стереоизомеров практически не отличаются друг от друга. [c.313]

    Вероятно, эту аналогию можно распространить и на относительные количества образующихся первичных изомеров содержание первичного нитросоединения (в % мол.) должно быть почти такое же, как и содержание первичного хлорида, полученного при хлорировании этого же парафинового углеводорода. Однако это пока еще точно не доказано. Итак, нитрование н-додекана приводит к следующей смеси изомеров  [c.565]

    Впервые нитрацию парафиновых углеводородов удалось осуществить М. Коновалову нагреванием углеводородов в запаянных трубках со слабой азотной кислотой (уд. в. 1,025—1,075 при 120—125° С. В результате образуются вторичные и третичные нитросоединения с выходом до 50—W/o от теории. [c.140]

    Перспективным направлением использования углеводородов газовых конденсатов является получение на их основе нитросоединений путем нитрования низкомолекулярных парафинов. Можно полагать, что различные нитроспирты и другие нитросоединения найдут самое широкое применение в промышленности органического синтеза. Целесообразно также развивать в газопереработке процессы, основанные на реакции парафиновых углеводородов с сернистыми соединениями. [c.55]

    Парафиновые, олефи-новые углеводороды, галогенопроизводные, ацетон, простые эфиры, альдегиды, нитросоединения. нейтральные газы, H I, сероуглерод Газы, в том числе NH3 [c.287]

    Оптимальные результаты (наибольший выход до 50% и наиболее чистое нитросоединение) получаются при нитровании парафиновых углеводородов разбавленной 12,5%-ной азотной кислоты ( =1,075) при ПО—140° в запаянных трубках .  [c.13]

    Отсутствие до недавнего времени удобных и дешевых методов получения нитросоединений жирного ряда было основным препятствием широкого внедрения этого класса соединений в практику. Причиной этих трудностей является большая инертность парафиновых углеводородов по сравнению с ароматическими углеводородами к действию азотной кислоты. В течение многих лет попытки ввести нитрогруппу в ациклические углеводороды прямым действием азотной кислоты не давали положительных результатов (это также относится к нитрованию боковой цепи ароматических углеводородов). Однако широкая доступность парафиновых углеводородов (особенно СССР богат естественными газами, которые и представляют источники низших парафиновых углеводородов) заставила многих химиков обратиться к изучению вопроса переработки предельных углеводородов в нитропарафины. Этот класс соединений может быть использован в различных областях химической промышленности. Кроме того, нитропарафины являются весьма реакционноспособными веществами, и на их основе можно синтезировать многие новые, весьма ценные химические продукты, из которых некоторые уже нашли себе применение. [c.11]

    Из табл. 29 и 30 видно, что характер разбавителя (азот, воздух), а также его количество при нитровании парафиновых углеводородов в паровой фазе не оказывают существенного влияния на выход нитросоединений. Во всех случаях выход нитросоединений зависел только от характера нитруемого углеводорода. [c.386]

    Основные научные исследования посвящены изучению действия азотной кислоты на органические соединения. Открыл (1888) нитрующее действие слабого раствора азотной кислоты на алифатические (реакция Коновалова), алициклические н жирноароматические углеводороды. Разработал (1888— 1893) методы получения оксимов, альдегидов, кетонов и спиртов на основе нитросоединений жирного ряда. Своей реакцией он, по словам Н. Д. Зелинского, оживил химических мертвецов , какими считали в то время парафиновые углеводороды. Использовал реакции нитрования для определения строения углеводородов. Разработал (1889) методы выделения и очистки различных нафтенов. [c.252]

    Оказалось, что нет четко выраженных корреляций между химическими свойствами (природой) вещества и временем его появления на хроматограмме. В реальных смесях загрязнений воздуха, воды или почвы может одновременно присутствовать более 100 компонентов, относящихся к химическим соединениям разных классов (парафиновые, нафтеновые, олефиновые или ароматические углеводороды, спирты, альдегиды, амины, нитросоединения, фенолы, меркаптаны, сульфиды и др.). Среди них всегда найдется по крайней мере несколько соединений с близкими временами удерживания (табл. Т4), которые на хроматограмме трудно отличить друг от друга. [c.49]


    Алкилирование оксониевыми солями натриевых и калиевых солей ациформ нитросоединений парафинового ряда приводит к образованию оксимов и в 1<ачестве побочных продуктов 0-алкиловых эфиров окси-мов [89]. Например, при взаимодействии [(С2Н5)дО[ВР4 с питроцикло-гексапом в водном растворе NaOH при 50—60° получается оксим цикло-гексанона с выходом 74% и 0-этиловый эфир оксима циклогексанона с выходом 19%. [c.35]

    Этот метод обработки водной азотной кислотой при высокой температуре, открытый М. И. Коноваловым, позволяет получать нитросоединения парафиновых углеводородов, а из толуола — фенилнитрометаи sHb HjNOs > . [c.173]

    При прямом нитровании парафиновых углеводородов получаются истинные нитросоединения, в которых имеется связь С — N. При этом можно использовать любые из методов (при помоши азотной кислоты или окислов азота), описанные в главе Нитрование... . Изомерный нитропарафинам эфир азотистой кислоты, который всегда получается в большем или меньшем количестве в качестве побочного продукта при синтезе нитропарафинов по Мейеру, при прямом нитровании парафиновых углеводородов азотной кислотой в продуктах реакции отсутствует. Это легко доказать тем, что если обработать продукты прямого нитрования парафинов разбавленными минеральными кислотами окислы аэота не выделяются, в то время как эфиры азотистой кислоты в этих условиях очень быстро распадаются на спирт и окислы азота. Однако при газофазном нитровании парафиновых углеводородов при 400° могут [c.559]

    Несмотря на разнообразные возможности применения и химической переработки нитросоединений парафинового ряда, масштабы мирового производства этих веществ невелики. При получении нитропарафинов расходуется значительное количество азотной кислоты—от 3 до 7 молей ННОз на 1 моль ННОг (без учета использования части окислов азота в производстве азотной кислоты). [c.375]

    Изомерия нитросоединений парафинового ряда тождественна с изомерией других однозамещенных этого ряда, например галогенных соединений. Как и другие производные ряда метана, нитросоединения могут быть первичными, вторичными и третичными. Изомерия далее может зависеть от строения группы NO2 (см. о псевдокислотах). Кроме того, изомерный одноатомный остаток NO3, содержащий трехвалентный азот —О—N = 0, присутствует в так называемых сложных эфирах азотистой кислоты, которым нитросоединения также изомерны. [c.136]

    Таким образом бромистый алюминий способен в известных случаях и в отсутствии свободного галоида вызывать замещение водорода бромом . Что касается механизма этих превращений, то вопрос об этом составит цель последующих работ авторов в связи с более всесторонним изучением отношения нитросоединений парафинового ряда (циклические гфедельные нитроуглеводороды также будут изучены в этом отношении, для чего некоторые из них придется получить синтетически) к галоидным солям алюминия. [c.428]

    Нитросоединения высокомолекулярных парафиновых углеводородов представляют в чистом виде бесцветные, маслообразные жидкости, которые при долгом стоянии постепенно желтеют. Обычно их получают в виде желтоватого масла. Они обладают цветочным, жирным запахоТ и растворимы почти во всех органических растворителях. [c.312]

    Инициированное термическое алкилирование. Термическое алкилиро-вание.парафигговых углеводородов можно осуш ествить в мягких условиях, если к смеси парафинового и олефинового углеводородов добавить небольшие количества (1—3% вес. на о бщ ую загрузку) таких веществ, как алифатические галоидные или нитросоединения [33]. Парафиновые углеводороды с прямой и разветвленной ценью алкилируются ири 300—400° и давлении 210 ат и выше. При этом получаются такие же продукты, как и при чисто термических реакциях это указывает на то, что и здесь имеет место свободно-радикальный механизм реакции, а катализаторы служат в качестве инициаторов цеии путем распада их с образованием радикалов при сравнительно более низкой температуре, чем в случае углеводородов. [c.308]

    В соответствии с правилом Марковникова в первую очередь замещается нитрогруппой атом водорода, находящийся у наименее гидрогенизированного атома углерода. Коновалов установил, что в парафинах нормального строения группа N02 при прочих равных условиях предпочтительно направляется в а-положение к метильной группе. Если же в углеродной цепи имеется фенильная группа, то группа N02 становится в и-положение к этой последней, т. е. к фенильной группе. При нитровании парафинов, содержащих третичные атомы углерода, нитрогруппой преимущественно замещается водород, стоящий у третичного атома углерода. В этом случае в продуктах реакции третичные нитросоединения составляют 75—80%, а вторичные 20—25%. Такая избирательность (хотя и не полная) нитрования парафинов по третичному атому углерода была использована С. С. Наметкиным для доказательства строения парафиновых углеводородов, выделенных из нефти, каменноугольной смолы и озокерита [134—381]. При помощи этого метода можно установить соотношение в твердых предельных углеводородах структур нормального и разветвленного строения. Однако точные количественные результаты по этому методу получить не удается, так как реакция нитрования в большей или меньшей степени осложняется реакциями окисления, приводящими к глубокой деструкции части взятых для нитрования углеводородов. [c.56]

    В отличие от нефтяных парафинов и церезинов буроугольный парафин молекулярного веса С2вНб4 дал при нитровании вторичные нитросоединения состава a2H4sN02. Нитрованием многократно перекри-сталлизованного образца американского парафина в нем было установлено наличие 25% парафиновых углеводородов нормального строения. [c.84]

    Прн действии азотной кислоты на парафиновые углевоюроды одновременно с продуктом ннтровання в значительном количестве образуются продукты окисления [41. Выход последних нередко превосходит выход нитросоединений, особенно если процесс ведут при высокой температуре, так как температурный коэффициент реакции окисления больше, чем реакции нитрования. [c.211]

    Скорость реакции и выход нитросоединений зависят от температуры, давления, продолжительности процесса, а также от концентрации применяемой азотной кислоты. С повышением концентрации HNO3 реакция нитрования ускоряется. Если взаимодействие парафиновых углеводородов с 47,5%-ной азотной кислотой протекает достаточно быстро при атмосферном давлении, то при нитровании разбавленной азотной кислотой (10—13,5%-ной) для ускорения реакции повышают температуру и давление. Наибольший выход при минимальном содержании побочных продуктов достигается в случае нитрования 13,5%-ной кислотой при температуре ПО—140 °С под давлением, равным парциальному давлению насыщения паров реакционной смеси при этих температурах. [c.197]

    Совсем другое положение заняли реакции нитрования, которые были открыты Митчерликом в 1834 г. Благодаря работам Зинина и Гофмана ароматические нитросоединения стали источником получения аминосоединений и далее всевозможных азокрасителей, а процессы нитрования бензола и его гомологов сделались ооэтому предметом многочисленных исследований. Это обстоятельство сразу выдвинуло реакции нитрования по сравнению с реакциями галогенирования и даже окисления на первое. место. Ввиду того что азотная кислота при обыкновенной температуре на парафины почти не действовала, а при нагревании вызывала деструктивное окисление, применительно к парафиновым углеводородам реакции нитрования долгое время считались бесперспективными. В 1889 г. Коновалов нашел способ нитрования также и парафинов, что вызвало ряд новых исследований процессов нитрования. Если учесть при этом, что хлорирование и вообще галогенирование парафинов приводило, как правило, к сложной смеси продуктов, а реакция Коновалова была более из бирательной, то нетрудно понять, почему Марковников и Коновалов на нитрование возлагали большие надежды в смысле перевода парафинов и нафтенов в более ценные продукты нитрование по способу Коновалова они назвали оживлением химических мертвецов. [c.302]

    Низшие нитропарафины имеют слабый запах, сравнительно малую ядовитость и высокую растворяющую способность. Нитросоединения высокомолекулярных парафиновых уг.тгеводородов представляют собой бесцветные маслообразные жидкое и, но иа воздухе постепенно желтеют. Высококипящие мононитропарафпны, содержащие до 12 — 18 атомов углерода, могут перегоняться в высоком вакууме. [c.141]

    В 1880 г. Ф. Бельштейн и А. Курбатов [1] нитровали бензиновые фракции нефти разбавленной азотной кислотой и выделили нитросоединения алициклической природы. В 1891 г. М. И. Коновалов [2] разработал метод нитрования парафиновых углеводородов разбавленной 12—15%-ной азотной кислотой при 130—150° С под давлением. Эти исследования затем продолжались В. В. Марковниковым [3] и С. С. Наметкиным [4]. Последний проводил свои исследования по нитрованию в связи с изучением строения твердых парафинов. [c.383]

    Способы получения. 1. Нитрование парафиновых углеводородов. Нитросоединения могут быть получены дей ствиьм азотной кислоты на парафиновые углеводороды (М. И. Ко новалов). Нитрование парафиновых углеводородов в газовой фазе при температурах 150—475° С соверщается довольно гладко, и в настоящее время осуществляется в промышленности. [c.267]


Смотреть страницы где упоминается термин Нитросоединения парафинов: [c.87]    [c.80]    [c.250]    [c.274]    [c.247]    [c.250]    [c.198]    [c.393]    [c.84]    [c.25]   
Технология нефтехимического синтеза Часть 2 (1975) -- [ c.123 , c.133 ]




ПОИСК





Смотрите так же термины и статьи:

Нитросоединения

Нитросоединения аци-Нитросоединения

Нитросоединения ряда парафинового



© 2024 chem21.info Реклама на сайте