Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомеры поворотные конформации

    Большая длина макромолекулы при возможности вращения частей молекулы вокруг простых связей обусловливает еще один вид изомерии — поворотную изомерию, которая выражается в возникновении различных конформаций. Конформацией макромолекулы называют пространственное расположение атомов или групп атомов в молекуле, которое может меняться под действием теплового движения без разрушения химических связей. Конфор-мационные перестройки происходят и в малых молекулах, где разнообразие поворотных изомеров намного меньше, чем в макромолекулах. [c.92]


    Кривая потенциальной энергии внутреннего вращения имеет несколько минимумов, вообще говоря, не одинаковых по глубине. Большую часть времени макромолекулы находятся в положениях, соответствующих минимумам энергии. Устойчивые конформации звена называют поворотными изомерами. По Волькенштейну [15], предложившему теорию поворотной изомерии полимеров, конформацию макромолекулы можно приближенно рассматривать как последовательность поворотных изомеров. В поворотно-изомерном приближении изменения конформации полимерной цепи представляют собой переходы от одних наборов поворотных изомеров к другим. [c.153]

    В настоящее время принято называть изомеры, переходящие друг в друга путем вращения атомов вокруг химической связи без разрыва валентностей, поворотными (ротационными) изомерами илн конформациями. [c.362]

    При внутреннем вращении W проходит через максимумы и минимумы. Если эти изменения W значительно больше ВТ, то молекула будет в основном принимать такие конформации, которые соответствуют минимумам с относительно редкими переходами из конформации, соответствующей одному минимуму , в конформацию, соответствующую другому минимуму ] . В этом случае при внутреннем вращении образуется несколько относительно устойчивых конформаций молекулы — поворотных изомеров. Поворотная изомерия имеет место для многих молекул [24—26], например для молекул н-алканов, начиная с к-бутана. [c.232]

    Большой вклад в понимание природы деформации полимеров сделан М. В. Волькенштейном с сотр. [12—14]. В этих работах поведение молекул полимеров при деформации рассматривается как кооперативный процесс, связанный с большим количеством возможных конформаций макромолекулы, обусловленных поворотной изомерией. Под конформациями понимают все возможные конфигурации, т. е. взаимные расположения сегментов макромолекул. Теория кооперативных процессов уже очень много дала для расчета поведения растворов полимеров. Количественные описания деформации сетчатых полимеров в блоке пока отсутствуют. [c.306]

    Соберите модели двух поворотных (конформаци-онных) изомеров гексахлорэтана (заторможенного и заслоненного). [c.7]

    Электрический дипольный момент молекулы является важной характеристикой химического соединения, поскольку дает представление о распределении зарядов и электронной плотности в молекуле, т. е. о полярности самой молекулы и ее химических связей. На основе экспериментальных значений дипольных моментов молекул и принципа векторной аддитивности дипольных моментов связей возможно определение симметрии и некоторых структурных параметров молекул, например валентных углов. Методы изучения дипольных моментов сыграли значительную роль в развитии учения о внутреннем вращении, поворотной изомерии и конформациях молекул. [c.81]


    Учение о поворотной изомерии, о конформациях молекул является одним из наиболее значительных достижений стереохимии за последние десятилетия. Конформационные представления ныне широко используются в органической химии. В этой главе мы [c.97]

    С такой характеристикой, конформации являются поворотными изомерами, вполне аналогичными изомерам, возникающим в результате вращения вокруг двойной связи. Однако, поскольку потенциальные барьеры, связанные с вращением вокруг простых связей, относительно низки, выделение таких изомеров едва ли осуществимо. Тем пе мепее каждый поворотный изомер или конформация имеет ясно выра кенные, индивидуальные физические свойства. Во многих случаях идентифицированы спектры отдельных конформаций. [c.10]

    Изучение конформаций молекул. Всякие изменения в структуре молекулы отражаются на колебаниях входящих в ее состав атомов, что в свою очередь проявляется в ИК-спектрах. Таким образом изучение колебательных спектров в разбавленных растворах (для исключения межмолекулярных взаимодействий) дает информацию о различных конформационных взаимодействиях. Изучение ИК-спектров позволяет, например, исследовать поворотную изомерию, которая обусловлена заторможенным вращением объемистых заместителей вокруг данной связи. Если высота энергетического барьера вращения достаточно высока, то это приводит к крутильным колебаниям группы атомов такие колебания обычно расположены в дальней ИК-области (v<200 см" ), а их частоты позволяют рассчитать высоту соответствующего потенциального барьера. [c.220]

    Для некоторых веществ конформация в твердой фазе может зависеть от условий замораживания вещества. Например, при охлаждении 1,1,1-трифтор-З-хлорпропана ниже —103,4° С образуется кристаллическая модификация, в которой все молекулы имеют одинаковую гош-конформацию. При температурах от —103,4°С до температуры плавления вещества (—93,8° С) в кристалле находятся в равновесии оба поворотных изомера, что фиксируется по появлению в колебательном спектре полос анти-изомера. Если же очень быстро охладить вещество жидком азотом (—196° С), то при этом вымораживаются обе конформации, но равновесия между ними нет из-за невозможности преодоления потенциального барьера при низкой температуре. При нагревании такого образца до —157° С все молекулы переходят в гош-конформацию. [c.221]

    Поворотные изомеры макромолекул, возникающие в результате теплового движения звеньев, называются конформациями цепи. [c.77]

    Конформация макромолекул - форма полимерной цепи, обусловленная возможностью вращения звеньев вокруг валентных связей в результате теплового движения, не сопровождающегося разрушением химических связей между атомами и атомными группами. Вид поворотных изомеров, ротамеров (см. Гибкость макромолекул). [c.400]

    Конформацию на первый взгляд можно было бы определить как конфигурацию с включенным тепловым движением. Иными словами, это переменное (из-за теплового движения) распределение в пространстве атомов и атомных групп, образующих макромолекулу. В первом приближении конформация характеризуется неизменными валентными углами и связями, но переменными ориентациями связей. Флори [26] и многие его последователи полагают, что при условии неизменности связей конформации достаточно полно могут быть описаны двумя углами, определяющими ротамеры, или поворотные изомеры , но мы бы сделали акцент на слове достаточно , а не полно . [c.29]

    Обычно поворотную изомерию иллюстрируют на примере этана. Конформации молекулы этана отличаются положениями метиль-ных групп СНз друг относительно друга. В остальном этан похож на молекулу водорода оба радикала СНз удерживаются одной -электронной обменной связью (а-связью), вокруг которой, казалось бы, возможно свободное вращение. Но, с другой стороны, можно трактовать этан как метан, в котором один водород заменен на группу СНз. Хотя атомы водорода каждого метильного радикала и удалены от атомов водорода партнера , обменное взаимодействие между ними сохраняется, причем, поскольку все связи насыщены, то возникает отталкивание. Поэтому, если считать этан замещенным метаном и соответственно изображать его двумя тетраэдрами с взаимопроникающими вершинами, необходимо предположить, что энергетически выгоднее будет конформация, при которой один тетраэдр повернут вокруг оси С—С на 60° по отношению к другому. Такой поворотный гранс-изомер (рис. 1.4,6), следовательно, должен преобладать в равновесной смеси над цис-изомером (рис. 1.4, а). [c.30]

    После этого уже нетрудно выяснить, что поворотная изомерия вносит в неподвижный (т. е. с еще не включенным тепловым движением) вариант конформации. Так, изображение изотакти-ческого винилового полимера на рис. 1 (стр, 12) соответствует допустимой конфигурации, но энергетически практически невозможной ситуации с 1 ис-ротамерами. Поэтому энергетически выгодно, чтобы цепь утратила транс-кон-формацию и превратилась в спираль, так чтобы радикалы X ока- [c.32]

    Если вращающиеся группы не имеют оси симметрии третьего порядка, то зависимость потенциальной энергии от угла ф описывается более сложно. На кривой потенциальной энергии имеются различные по глубине минимумы. Относительным минимумам потенциальной кривой соответствуют различные взаимные расположения валентно не связанных атомов или групп, т. е. различные конформации звеньев и цепи в целом. Им соответствуют различные потенциальные энергии в минимумах и, соответственно, различные поворотные изомеры или ротамеры. Например, в уже рассмотренном (гл. I) 1,2-дихлорэтане, кривая потенциальной энергии которого схематически изображена на рис. IV. 11, а структура представлена на рис. IV. 12, поворотные изомеры соответствуют скрещенным конформациям при ф, равном О, 120 и 240°. Транс-конформация при ф = О, в которой атомы хлора удалены друг от друга на максимальное расстояние, имеет потенциальную энергию меньшую, чем свернутые (гош)-Конформации при ф = 120 и 240  [c.135]


    По современным представлениям, гибкость макромолекул связана с изменением взаимного расположения смежных атомов цепи или звеньев. При этом звенья обладают набором устойчивых конформаций (поворотных изомеров), соответствующих минимумам потенциальной энергии. Изменение конформаций макромолекул происходит путем перехода звена от одних минимумов к другим через потенциальные барьеры. Чем выше потенциальный барьер, тем реже происходит переход от одного поворотного изомера к другому. При этом среднее время т, характеризующее процесс перехода от одной равновесной конформации к другой, тем больше, чем выше потенциальный барьер 11, и тем меньше, чем больше интенсивность теплового движения, характеризуемая величиной кТ (где k — постоянная Больцмана, Т — температура). Согласно статистике Больцмана, т = С ехр [ //(йГ)] (здесь С — постоянная, равная кон-формационному времени в условиях, когда U = 0 или Г- оо). [c.17]

    Кривая потенциальной энергии внутреннего вращения имеет несколько максимумов, вообще говоря, не одинаковых по глубине. Большую часть времени связь С—С находится в положениях, соответствующих минимумам энергии. Эти устойчивые конформации звена, получающиеся путем вращательных движений вокруг единичных связей, называются поворотными изомерами. По М. В. Волькенштейну [4.1], развившему теорию поворотных изомеров в полимерах, макромолекулу можно приближенно рассматривать как смесь поворотных изомеров. В поворотно-изомерном приближении внутреннее вращение в цепи представляет собой переходы от одних к другим поворотным изомерам. [c.84]

    В реальных молекулярных цепях полимеров на конусе вращения имеется один-два (или больше) минимума с различными потенциальными энергиями. Связь С—С может находиться либо в одном, либо в другом из этих положений с минимальными значениями потенциальной энергии. Подобные различные конформации молекул, отличающиеся потенциальной энергией, относятся к поворотным изомерам [41 11], характерным как для полимеров, так и для низкомолекулярных веществ. У полимеров они представляют собой набор различных конформаций цепей —от свернутых до распрямленных. Анализ с этих позиций формулы (4.13) привел М. В. Волькенштейна и О. Б. Птицына к заключению, что формула Тейлора относится к полимерам с симметричными привесками (полиэтилен, полиизобутилен), в которых потенциал внутреннего вращения симметричен относительно трансположения, т. е. /(ф) = = и —ф) (см. рис. 4.8 и 4.10). [c.94]

    Изобразите молекулу этана в различных конформациях (заслоненной и заторможенной), пользуясь формулами Ньюмена. Сравните устойчивость поворотных изомеров. [c.11]

    При исследовании конформаций алициклических соединений и поворотной изомерии производных этана можно использовать зависимость констант 2/нн от двугранного угла фрагмента Н — С — С — Н, иллюстрируемую рис. 1.10 и приближенно описываемую уравнением Карп-луса  [c.29]

    ПОВОРОТНАЯ ИЗОМЕРИЯ, частный случай конформац. изомерии (см. Конформации). Обусловлена заторможенным вращением фрагментов молекулы вокруг соединяющей их связи. Наблюдается, напр., у молекул 1,2-дизамещеи-ного этана. Возникающие в результате П. и. конформации молекул обладают разл. термодинамич. стабильностью. В кристаллах, как правило, стабилен лишь один изомер, в газах и жидкостях изомеры находятся в динамич. равновесии, положение к-рого зависит от т-ры, давления и природы среды. Поворотные изомеры идентифицируют и изучают с помощью спектроскопич., дифракционных и др. физ. методов. См. также Внутреннее вращение молекул. ПОГРЕШНОСТИ АНАЛИЗА, см. Метрология химическо-го анализа. [c.452]

    Konformationsanalyse f конфор ма-ЦИОННЫЙ анализ Konformer(es) n поворотный изомер, устойчивая конформация Konglomerat п 1. конгломерат 2. конгломерат, механически разделимая смесь оптических антиподов [c.380]

    Следует заметить, что для сахаров в циклической форме возможен еще один вид изомерии — поворотная изомерия.связанная с расположением в пространстве углеродных атомов шестичленнЬго кольца. Пиранозный цикл, подобно циклогексановому, способен существовать в виде нескольких конформеров с различной устойчивостью. От циклогексанового он отличается несимметричностью, обусловленной присутствием в цикле кислородного атома, что увеличивает число возможных конформационных изомеров. В то время как для циклогексанового кольца возможно всего два конформационных изомера — кресловидный и ваннообразный, пиранозное кольцо может-существовать в виде восьми ненапряженных конфор- маций, две из которых кресловидные и шесть ваннообр азные. Эти шесть ваннообразных конформаций энергетически менее выгодны, и их существование можно не учитывать. Две более устойчивые креслообразные конформации получаются при такой конверсии пиранозного кольца, в результате которой все аксиальные заместители становятся экваториальными, и наоборот  [c.528]

    Различные формы одной и той же макромолекулы, ее поворотные изомеры, называются конформациями. При тепловом движении, под действием толчков соседних макромолекул или молекул растворителя полимерные цепочки все время изменяют форму, т. е. принимают различные конформации, причем переходы от одной конформации к другой совершаются без изменения внутренней энергии системы. Благодаря свободному вращению вокруг 0- вязей возможно существование огромного числа конформаций, и это является причиной феноменальной гибкости полимерных молекул. Мы рассмо-црели факторы, определяющие гибкость полимерных молекул, теперь перейдем к факторам, ее ограничивающим. [c.56]

    Поворотная изомерия. Если для молекулы возможны две (или более) формы расположения ядер, переходящие друг в друга посредством внутреннего вращения, говорят о двух (или более) конформациях (конформеры, поворотные изомеры). Так, у 1,2-дизамешен-ных этана СНаХ—СНаХ уже возможны не одна, а две шахматные формы (рис. 44), которые могут переходить друг в друга посредством вращения. Наиболее устойчива транс-конформация (рис. 44, а), несколько менее устойчива гош-конформация (рис. 44, б). Максимумам на потенциальной кривой (рис. 44, в) отвечают затененные конформации. В газообразном и жидком состоянии веществ осуществляется взаимный переход одной конформации в другую и устанавливается термодинамическое равновесие между ними, зависящее от температуры. [c.107]

    В конформационно подвижных молекулах алканов изменение конформаций осуществляется за счет заторможшного вращения вокруг связей - J. Отметим, что вращение вокруг связей С -С2, С -Сд, С2-С4, Сд-С , С4-С4 в алканах на приводит к кон-формационным превращениям, в то время как вращение вокруг связей С2-С2, С2-С3, Сд-Сз сопровождается поворотной изомерией /99/. [c.146]

    Говоря об устойчивых (или неустойчивых) конформациях в конфор-мационном анализе, имеют в виот относительную термодинамическую устойчивость, определяемую значениями конформационной свободной энергии /103/, В условиях равновесии в алкаке существует бесчисленное множество конформаций. Однако основное конформационное состояние молекул определяется стереохимическими особенностями лшяь некоторых, термодинамически наиболее устойчивых поворотных изомеров /102/, Если конформационную свободную энергию определять только значением энтальпии конформационного перехода АН, пол .-гая изменение энтропии равным нулю, то наиболее устойчивой будет трансоидная конформация. Образование скошенных форм может оказаться предпочтительней только вследствие изменения энтропии. При повышении температуры и удлинении молекулы роль энтропийного фактора растет, В наших расчетах свободная энергия конформеров определялась как разность энергии данной конформации и полностью трак-соидной. [c.147]

    Конформационный анализ посвящен рассмсп рению тех бесчисленных молекулярных структур, которые возникают и результате вращения в молекуле групп атомов вокруг ординарных связей эти структуры называются конформациями. Каждая конформация характеризуется определенным пространственным расположением атомов н, в связи с этим, определенным содержанием энергии. При вращении группы атомов вокруг ординарной связи потенциальная энергия молекулы претерпевает изменение, которое может быть описано синусоидальной кривой. Те конформации, которым на этой кривой соответствуют минимумы, способны реально существовать и называются поворотными изомерами или у с т о н ч и з ы ми к о н ф о р м а-циями . Остальные конформации представляют такие энергетические состояния, которые молекула должна пройти для превращения одной устойчивой конформации в другую. Относительно низкие значения энергии активации взаимного превращения устойчивых конформаций, как правило, являются причиной невозможности разделения поворотных изомеров при обычных температурах (исключением являются некоторые производные дифенила и аналогичные нм соединения, рассмотренные на стр. 490). Так как разные поворотные изомеры обычно энергетически неравноценны, то большинство молекул каждого соединения существует преимущественно в одной или лишь в очень немногих устойчивых конформациях. Однако под действием специфических сил в условиях химической реакции соединение может также временно принять какую-либо из энергетически менее выгодных конформаций. [c.800]

    Удобно начать с рассмотрения молекулы полиэтилена по Печхолду [7]. Последний получил изолированную функцию поворотных изомеров цепи с п независимыми С—С-связями. Разрешается поворот цепи вокруг своих С—С-связей, в результате чего достигаются три минимума потенциальной энергии, из которых абсолютный минимум соответствует вытянутой транс-конформации (/). Два относительных минимума при углах отклонения связей к плоской конформации 120° соответствуют двум гош-конформациям g, ) с энергией конформации Кинк-изомеры образуют подкласс поворотных изомеров, когда лишь п/2 несоседних связей могут находиться в положениях g или . Для кинк-изомеров энтропия, внутренняя и свободная энергия в зависимости от средней концентрации гош-конформаций получаются в виде [7] [c.123]


Смотреть страницы где упоминается термин Изомеры поворотные конформации : [c.141]    [c.155]    [c.98]    [c.381]    [c.127]    [c.11]    [c.75]    [c.802]    [c.123]    [c.307]    [c.273]    [c.96]   
Органическая химия Издание 2 (1976) -- [ c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Изомерия поворотная

Поворотная изомерия конформации

Поворотные изомеры

поворотные



© 2024 chem21.info Реклама на сайте