Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомерия поворотная теория

    Кривая потенциальной энергии внутреннего вращения имеет несколько максимумов, вообще говоря, не одинаковых по глубине. Большую часть времени связь С—С находится в положениях, соответствующих минимумам энергии. Эти устойчивые конформации звена, получающиеся путем вращательных движений вокруг единичных связей, называются поворотными изомерами. По М. В. Волькенштейну [4.1], развившему теорию поворотных изомеров в полимерах, макромолекулу можно приближенно рассматривать как смесь поворотных изомеров. В поворотно-изомерном приближении внутреннее вращение в цепи представляет собой переходы от одних к другим поворотным изомерам. [c.84]


    Кривая потенциальной энергии внутреннего вращения имеет несколько минимумов, вообще говоря, не одинаковых по глубине. Большую часть времени макромолекулы находятся в положениях, соответствующих минимумам энергии. Устойчивые конформации звена называют поворотными изомерами. По Волькенштейну [15], предложившему теорию поворотной изомерии полимеров, конформацию макромолекулы можно приближенно рассматривать как последовательность поворотных изомеров. В поворотно-изомерном приближении изменения конформации полимерной цепи представляют собой переходы от одних наборов поворотных изомеров к другим. [c.153]

    Поворотная изомерия полимеров установлена рядом методов, прежде всего методом инфракрасной спектроскопии. Для важнейших полимеров энергетические барьеры значительно превышают кТ. Поворотно-изомерная теория получила прямые экспериментальные подтверждения при изучении термомеханических свойств и растяжения полимеров (см. стр. 136). Эта теория легла в основу современной статистической физики макромолекул, последовательно изложенной в монографиях [2, 3, 5]. [c.131]

    Поворотно-изомерная теория дает количественное истолкование физических характеристик макромолекул в растворе — размеров и формы клубков, дипольных моментов и оптических свойств. Теория хорощо согласуется с опытом [2, 3, 5]. Она раскрывает физический механизм растяжения полимеров — высокоэластичность каучука. При растяжении цепи происходит изменение набора ее конформаций. Механизм такого изменения — поворотная изомеризация. Поясним сказанное с помощью одномерной модели макромолекулы. Представим каждое звено стрелкой длиной I, которая может смотреть или вправо, или влево. Одному поворотному изомеру (обозначим его t) отвечают две соседние стрелки, смотрящие в одну сторону, другому (обозначим его s)—две соседние стрелки, смотрящие в разные стороны. Общая длина цепи выражается алгебраической суммой длин всех стрелок. На рис. 3.12, а изображена цепь, состоящая из [c.136]

    Из соотношений (1.17) и (1.18) видно, что в рассматриваемой теории величина характеризующая термодинамическую гибкость цепи, зависит от температуры и от значений свободных энергий поворотных изомеров. Иначе говоря, зависит от разности ординат, соответствующих минимумам потенциальной энергии U( f). [c.30]

    Существование поворотных изомеров в полимерах экспериментально установлено методами инфракрасной спектроскопии. Оказалось, что для важнейших полимеров величина потенциального барьера существенно превышает kT. Поворотно-изомерная теория была эксперименталь- [c.31]


    Теория макромолекулы как линейной кооперативной системы не учитывает взаимодействий всех атомов цепи. Поскольку силы, действующие между атомами, более или менее быстро убывают с увеличением расстояния, взаимодействия валентно несвязанных атомов распадаются на два класса. К первому классу относятся взаимодействия ближнего порядка, т. е. взаимодействия атомов, расстояния между которыми в среднем малы и зависят от одного или нескольких углов внутреннего вращения. Естественно, что указанные взаимодействия, сводящиеся в основном к отталкиванию атомов с перекрывающимися электронными оболочками, характерны не только для высоко-, но и д.чя низкомолекулярных соединений. Они приводят к появлению тормозящего потенциала внутреннего вращения и к. хорошо известному явлению поворотной изомерии, что весьма существенно для понимания термодинамических и спектроскопических свойств молекул (см. гл. 2). Очевидно, что именно взаимодействия ближнего порядка учитываются при [c.15]

    Таким образом, теоретические исследования энергии внутреннего вращения в полимерных цепях подтверждают наличие поворотно-изомерного механизма гибкости макромолекул, а также указывают на заметную роль, которую могут играть в механизме гибкости крутильные колебания звеньев. Наличие поворотной изомерии в типичных макромолекулах подтверждается и упомянутыми выше спектроскопическими исследованиями. Несомненно, однако, что истинным критерием правильности тех или иных представлений о строении (ближнем порядке) и механизме гибкости макромолекул в растворе и высокоэластичном состоянии может являться лишь сравнение с опытом количественной теории макромолекул. основанной на этих представлениях. [c.134]

    Большой вклад в понимание природы деформации полимеров сделан М. В. Волькенштейном с сотр. [12—14]. В этих работах поведение молекул полимеров при деформации рассматривается как кооперативный процесс, связанный с большим количеством возможных конформаций макромолекулы, обусловленных поворотной изомерией. Под конформациями понимают все возможные конфигурации, т. е. взаимные расположения сегментов макромолекул. Теория кооперативных процессов уже очень много дала для расчета поведения растворов полимеров. Количественные описания деформации сетчатых полимеров в блоке пока отсутствуют. [c.306]

    Впервые физическая теория оптического вращения, пригодная для объяснения опытного материала, была предложена в 1929 г. Куном [86]. В развитии ее прикладной стороны большое участие принял Фрейденберг [87]. В последующие несколько лет начиная с 1927 г. [88] были предложены и квантово-механические теории оптического вращения (см. обзор [89]). С 40-х годов началась интенсивная разработка теорий оптического вращения, учитывающих зависимость последнего от строения возможных поворотных изомеров и в первую очередь наиболее устойчивого изомера [90 91, стр. 241 и сл.]. [c.89]

    Как известно, теория еще с 90-х годов прошлого века (Друде) считает нормальным такой ход кривых дисперсии, когда с уменьшением длины волны возрастает величина оптического вращения. Отклонения от такого вида кривых рассматриваются как аномальная дисперсия оптического вращения. В изучение ее также значительный вклад внес Чугаев, проведший в этой области большой цикл исследований [там же, стр. 384 и сл.]. Как правило, аномальная дисперсия связана с присутствием и взаимодействием минимум двух асимметрических центров в разных или одних и тех же молекулах. Однако Чугаев с сотрудниками еще в 1915 г. показал, что аномальной дисперсией могут обладать соединения и с одним асимметрическим центром [там же, стр. 487]. Вопрос о структурной причине аномальной дисперсии даже для такого хорошо изученного вещества, как винная кислота, остается неясным, хотя объясняющих гипотез предлагалось немало, еще начиная с Био. Согласно одной из таких гипотез [94], аномальная дисперсия вращения обусловливается присутствием в растворах винной кислоты трех форм, которые могут отвечать только трем поворотным изомерам. Однако эта точка зрения не бесспорна (см. [2, стр. 539]). [c.90]

    Было предположено, что поглощение звука обусловлено не только механизмом вязкого трения полимерных цепей, который преобладает на частотах ниже 1 МГц и характеризуется степенными функциями для раствора ПС — метилэтилкетон, — для раствора ПС —толуол и т. д. (см. рис. 3), но и дополнительными причинами, обусловливающими высокочастотную релаксацию. Одной из наиболее вероятных причин являются процессы поворотной изомерии. Действительно, ПИБ представляет собой равновесную смесь грамс-изомеров, а также правого и левого свернутых изомеров (гош-изомеры), причем последние энергетически эквивалентны друг другу. Согласно теории поворотно-изомерной релаксации [1], в этом случае частотная зависимость должна описываться кривой с одним временем релаксации, что и наблюдается на опыте. Наоборот, гош-изомеры ПС, ПММА и ПВХ энергетически не эквивалентны, поэтому для них процессы поворотной изомерии должны приводить к релаксации с двумя характеристическими временами, что хорошо соответствует экспериментальным данным. [c.190]


    Современная статистическая теория высокоэластической деформации предсказывает появление такой составляющей, связывая ее с перераспределением поворотных изомеров в процессе растяжения, т. е. приписывая ей внутримолекулярный характер При таком [c.149]

    Поверхностное натяжение 4 —101 Поверхностные явления 4—102 Поворотные изомеры — см. Конформационный анализ Поглощение света 4—104 Погрешности измерений 4—298 Подвижность ионов 4 —107 Подкладки — см. Носители в катализе Подобия теория 4—108 Подогреватели 5—72 Подсмольная вода 4—112 Подсолнечное масло — см. Жиры растительные Позитив 4 — 113 5—537 Позитивный процесс 4—114 Позитрон 4 —115 1—429 5—954 [c.575]

    Интересной в этом отношении является кинетическая теория высокоэластичности, основанная на представлении о различных конформациях цепных молекул, как о поворотных изомерах, обладающих одной и той же энергией. [c.58]

    Не отфицая в принципе наличия крутильных колебаний около каждого потенциального минимума, поворотно-изомер-ная теория исходит из того, что основным механизмом изменения конформаций является поворотная изомеризация, т. е. изменение содержания и распределения поворотных изомеров в цепи. Несомненно, что оба названных механизма гибкости имеют место во всех случаях, "причем преобладание того или иного из них связано с химическим строением цепей, температурой и рядом других факторов (например, находится ли данная молекула в растворе или блоке). [c.11]

    Печхолд и др. в своей количественной микроструктурной теории деформирования [10, 11, 141] также пользуются общей концепцией слабых различий между более и менее упорядоченными областями полимеров. Печхолд признает, что цепные молекулы существуют в энергетически различных состояниях поворотных изомеров, между которыми могут происходить [c.52]

    Мы видели уже в гл. I, что большую часть времени связи хребта цепи проводят в положениях, соответствующих минимумам энергии и отвечающих одному транс- и двум гош-поворотным изомерам (ротамерам). По Волькенштейну [7, с. 169], развившему поворотно-изомерную теорию гибкости полимеров, макромолекулу можно приближенно рассматривать как смесь поворотных изомеров внутреннее вращение при этом представляет собой переходы от одних к другим поворотным изомерам. Процесс растяжения полимера состоит в его поворотной изомеризации. Он сопровождается, во-первых, перефаспределенйем поворотных изомеров звеньев цепи без изменения их полного набора и, во-вторых, изменением набора поворотных изомеров, когда происходит переход от свернутых гош-изомеров к трамс-изомерам. Первое связано с изменением энтропии цепи, но не ее внутренней энергии, второе — с изменением обеих функций. [c.124]

    Представления, связанные с В. в. и поворотной изомерией молекул, применяют в теории строения как низкомол., так и высокомол. соединений. Разработаны методы и схемы конформационных расчетов достаточно сложных молекулярных систем на основе мех. моделей, получили также развитие полуэмпирич и неэмпирич. квантовомех. расчеты потенциальных ф-ций В. в. молекул. Для изучения явлений В в. и поворотной изомерии молекул используют методы спектроскопии ИК, комбинац. рассеяния, микроволновой, УФ, ЯМР, ЭПР, а также методы газовой электронографии, поглощения ультразвука, некогерентного, неупругого рассеяния нейтронов, измерения дипольных моментов, диэлектрич. потерь и др. [c.393]

    На основании структурных ф-л не только идентифицируется каждая М., но и выражаются мн. корреляции между св-вами М. и образованного из них в-ва. Так, последовательность хим. связей в структурной ф-ле позволяет различать структурные изомеры-М. с одним и тем же атомным составом, но разной последовательностью атомов. Разотчия в пространств, расположении атомов М. при одной и той же последовательности хим. связей позволяют идентифицировать стереоизомеры. Среди стереойзомеров выделяют поворотные изомеры, оптич. изомеры и др. (см. Изомерия, Конформационный анализ). Фиксир. группировки атомов, проявляющие четко выраженные, специфические для каждой из них <ж-ва, наз. функциональными группами. На использовании структу яых ф-л и соответствующих им моделей М. основаны конформац. анализ, структурная топология, а также ряд теорий, объясняющих реакц. способность сложных М. [c.107]

    Предварительно заметим, что, кроме названных выще естественных колебательных координат, в теории колебаний многоатомных молекул употребляются и линейные комбинации этих координат Это делается как в том случае, когда необходимо учитывать симметрию молекулы, так и в том случае, когда необходимо охшсать движение одновременно большого числа атомов относительно друг друга Такая ситуация может, в частности, возникнуть при описании вращений одной группы атомов относительно другой в молекуле, т е при движениях, соответствующих переходам одного поворотного изомера в другой [c.357]

    Пространственное строение и другие свойства синтетических полимеров в растворе отвечают состоянию статистического клубка и описываются усредненными параметрами. Молекулярная поворотно-изомерная теория синтетических полимеров, являющаяся составной частью статистической физики, была разработана в 1950-е годы М.В. Волькенштей-иом [47] и позднее развита Т.М. Бирштейном и О.Б. Птицыным [48] и П. Флори [49]. Основы теории фазовых переходов полимеров были заложены в 1968 г. И.М. Лифшицем [50]. Хотя белки являются полимерами и их пространственное строение также определяется поворотной изомерией, теи не менее механизм структурной организации и особенности нативных конформаций белковых молекул не могут быть рассмотрены в рамках отмеченных теорий, базирующихся на равновесной термодинамике и конфигурационной статистике полимерных цепей. [c.101]

    При высотах барьеров порядка десяти кДж/моль время поворотной изомеризации, т. е. время превращения одного ротамера в другой, имеет порядок Ю " с. К такой оценке приводит расчет на основе теории абсолютных скоростей реакций (см. 6.1). Следовательно, ротамеры нельзя разделить. Их наличие и доля устанавливаются путем изучения физических и химических свойств смеси ротамеров. Пространственное строение ротамероа различно, соответственно разлиЧа10тся и их колебательные спектры. За время жизни ротамера происходят сотни и тысячи колебаний (с частотами порядка 10 —10 с" )—ротамер успевает выдать свой спектр. Действительно, существование поворотпоа изомерии было впервые установлено Кольраушем с помощью спектров комбинационного рассеяния. Отношение интепсивпостей спектральных линий, отвечающих различным ротамерам, зависит от их содержания в смеси в соответствии с формулами (3.12). Следовательно, АЕ можно определить по температурному ходу интенсивностей спектральных линий. Так, для н-бутана найдено АЕ 2,5 кДж/моль. [c.66]

    Фиксация определенных поворотных изомеров для всех звеньев цепи в кристалле обеспечивает его дальний порядок гная положения атомов в данном мономерном звене, мы знаем их для сколь угодно удаленных звеньев, так как расположение атомов строго периодично. Вместе с тем в кристалле имеется, конечно, и ближний порядок — определенное расположение соседних звеньев. При плавлении или растворении полимера дальний порядок исчезает, но есть весьма веские основания считать, что ближний порядок сохраняется. Это установлено для низкомолекулярных жидкостей, современная теория которых исходит из предбтавлений об их квазикристаллическом строении, введенных Френкелем [24]. Сохранение ближнего порядка в макромолекулах следует из того, что кристаллические структуры полимеров соответствуют минимуму потенциальной энергии. Исходя из этих соображений, Птицыи и Шаронов [30] предположили, что ближ-кйй одномерный порядок в свободной макромолекуле, образующей статистический клубок, аналогичен дальнему одномерному [c.134]

    Поворотно-изомерная теория [I, 4, 5], предложенная Волькенштейном, рассматривает полимерную цепь как равновесную смесь поворотных изомеров. Внутреннее вращение рассматривается как поворотная изомеризация, т. е. как перескок отдельных звеньев из одной конформации в другую. На самом деле кроме таких перескоков возможны тепловые флуктуации, которые проявляются в виде крутильных колебаний с углами поворота ф, отвечающими минимумам на кривой /(ф), т. е. около положений, соответствующих поворотным изомерам. Однако эти флуктуации не влияют на усредненные свойства полимерных цепей, так как в силу своего случайного ха-эактера взаимно компенсируют друг друга. [c.28]

    Таким образом, в поворотно-изомерной теории линейный полимер рассматривается как равновесная смесь поворотных изомеров, реализуемая в пределах каждой мак-ромолекулярной цепи. [c.29]

    Следует заметить, что несколько лет назад была предпринята попытка [8] построить статистическую физику макромолекул, не прибегая к представлениям о поворотных изомерах. Алмазов и Павлоцкин [8] показали, что используя математический аппарат и методы современной статистической физики, можно описать физические свойства макромолекул, учитывая непрерывный, а не дискретный набор их конформаций. Однако при использовании этой теории для решения конкретных задач (например, расшифровки кода наследственности) были получены ошибочные результаты, что, естественно, снизило интерес к такому способу построения теории. [c.32]

    III. Степень вытянутости (или свернутости) гибкой или полужесткой макромолекулы можно характеризовать параметром р, равным отношению расстояния между концами макромолекулы h к ее контурной длине L. В покоящихся системах имеется довольно простая корреляция между наиболее вероятным значением р = (р) (р также распределено по закону Максвелла) и параметром Флори /. Однако, как было показано в лаборатории физической химии полимеров ИВС АН СССР и независимо де Женном, с позиций термодинамики и физической кинетики, параметр р имеет более фундаментальное значение, чем / дело в том, что — и тут в игру вступает теория диссипативных структур и бифуркаций Пригожина, развитая за последние 5 лет — по достижении некоторого критического значения р (причем, совершенно неважно, каким путем оно достигнуто) даже изолированная макромолекула теряет устойчивость по отношению к распределению поворотных изомеров и распрямляется (т. е. приобретает полностью транс-конформацию). В ансамбле многих макромолекул (большой системе) этот эффект резко усиливается, что наиболее убедительно было показано Келлером. [c.5]

    Для гибких цепей точная форма U ) часто неизвестна. Неудобство это удалось преодолеть в теории поворотной изомерии, впервые сформулированной для полимеров Волькен-штейном [3, гл. 4 4, гл. 2] и получившей дальнейшее развитие в работах Флори [5, гл. 1—4]. [c.15]

    Как можно видеть из описанного выше примера для натурального каучука, обычно каучукоподобные вещества обладают большой молекулярной массой и по этой причине называются высокомолекулярными соединениями. Более того, такие вещества не просто характеризуются высокими значениями молекулярной массы, а представляют собой молекулы, соединенные в длинные цепочки. Этот факт был обнаружен в 1920 г. Штаудингером при исследовании гидро-генизированного каучука. Таким образом, более точньци названием является цепные высокомолекулярные соединения . В таких цепных молекулах большой молекулярной массы, как будет более подробно описано в последующих параграфах, во всех С—С—связях, образующих фрагменты главной цепи, имеются поворотные изомеры. В данной главе для простоты считается, что поворотные изомеры, которые могут реализоваться при вращении относительно каждой связи, являются взаимонезависимыми. В рамках этого предположения число состояний, которые может принять молекула цепного строения большой молекулярной массы, будет представлять собой произведение числа поворотных изомеров, которые могут быть реализованы в каждой связи. С другой стороны, разные молекулы могут находиться в макроскопически идентичных состояниях, однако в каждом из них существует значительное число возможных микросостояний. Выбор числа таких микросостояний в качестве параметра W в уравнении (1.11) представляет собой основную предпосылку молекулярной теории энтропийной упругости каучукоподобных веществ. [c.15]

    Другие частичные асимметрические синтезы. Примерно в то же время, когда Прелог развивал свою теорию асимметрического синтеза, Крам и Эльхафез [413] предложили обобщенную теорию частичного асимметрического синтеза, включающую реакции Гриньяра, восстановление гидридами, восстановление натрием в спирте, восстановление по Меервейну — Понндорфу и восстановление оксимов в амины амальгамой натрия. Эта работа Крама еще раз подчеркивает важность эффектов заслоненности в переходных состояниях, ведущих к превращению тригонального состояния углерода в тетраэдрическое. Следующее правило позволяет довольно точно предсказать пространственное течение реакции по карбонильной группе Образующийся диастереомер соответствует подходу атакующей группы с наименее затрудненной стороны двойной связи, причем следует исходить из того поворотного изомера, в котором карбонильная группа заслоняется двумя наименее объемными группами, находящимися у соседнего асим метрического центра . Этот принцип представлен ниже  [c.698]

    Молекулярно-статистическая теория неспецифической адсорбции поворотных изомеров (н-бутана, н-пентана и м-гексана) на базисной грани графита разработана Киселевым, Пошкусом и Афреймовичем [Ю]. В этом случае, в соответствии с энергетически более выгодной ориентацией в адсорбированном состоянии при более низких температурах находятся преимущественно гранс-формы -алканов. При специфической же адсорбции может оказаться более выгодной цис- или гош-форма адсорбированных молекул, если эти молекулы содержат активные к специфическому взаимодействию звенья. [c.423]

    Если для жидкостей можно избежать применения растворителей, ведя измерения в тонких слоях, то для твердых веществ задача становится гораздо более сложной. Метод приготовления пленок испарением при нагревании в вакууме не является надежным, так как для многих испытанных образцов были обнаружены новые полосы поглощения, что могло явиться результатом различных превращений вещества (образование изомеров, полиморфные превращения), происходящих при испарении [23]. Приготовление взвеси мелко растертого вещества в очищенном парафиновом масле (Ыи]о1) или гексахлорбута-диене в основном пригодно лишь для качественных измерений из-за наличия сильных полос поглощения носителя и из-за невозможности определения содержания вещества с достаточной точностью. То же можно сказать и о различных видоизменениях этих методов [24]. В последнее время рекомендуется новый способ приготовления образцов в виде тонких таблеток. Для этого порошок, представляющий смесь мелко растертого КВг, прозрачного в инфракрасной области, и исследуемого вещества, подвергается в течение 15—20 мин. давлению порядка 20 г. В результате таблетка принимает вид стеклообразной массы КВг с равномерно распределенными вкраплениями частичек исследуемого вещества. Опытная проверка показала пригодность нового метода для количественных измерений [25—27]. Однако надо иметь в виду, что применение спектров поглощения веществ, снятых в твердом состоянии, для анализа жидких фракций, в которых эти вещества находятся в растворенном состоянии, может привести к ошибочным выводам. Имеющиеся опытные данные го ворят о наличии довольно значительных расхождений между ними. Так, для твердых парафинов в области 13—14,5 ц наблюдается дублет, тогда как в жидком состоянии и в растворе изооктана сохраняется лишь одна длинноволновая компонента с резко ослабленной интенсивностью [28]. Не исключена возможность, что аналогичным свойством обладают спектры многих других классов органических соединений с длинными парафиновыми цепями. В настоящее время делаются попытки объяснить эти явления с точки зрения теории поворотной изомерии и особенностей меж-молекулярного взаимодействия в кристаллической решетке [81]. [c.421]

    Из всего этого большого цикла экспериментальных и теоретических работ, приходящихся на 30-е и 40-е годы, был сделан уверенный вывод о существовании заторможенного вращения вокруг простых связей, о существовании поворотных изомеров — наиболее предпочтительных конформаций и в некоторых конкретных случаях — о высоте потенциальных барьеров, их разделяющих. Однако основную трудность представило понимание природы потенциала внутреннего вращения. И дело здесь было не только в трудностях расчета составляющих, обязанных пространственному отталкиванию и ван-дер-ваальсовым силам и их соотношению между собою, айв том, что теоретические расчеты и экспериментальные данные привели к предположению, которое хотя и было высказано сначала в 1940 г., но на которое сумел обратить внимание впервые, по-видимому, в 1957 г. Уилсон. Согласно этому предположению, распределение электронов вблизи осевой связи (связи С—С в этане и его производных) должно обусловливать существенный вклад в потенциальный барьер. С развитием этой идеи выступил Полинг, но, как он заметил, ни об одной из предложенных теорий нельзя сказать, что она удовлетворительно согласуется с экспериментальными данными [71, с. 9], [c.54]

    Несмотря на то, что с экспериментальной точки зрения вопрос о внутреннем вращении в молекулах изучен довольна хорошо, теория тормозящего потенциала еще практически не разработана. В принципе строгий квантовомеханический расчет, основанный на учете электростатических взаимодействий между всеми электронами и ядрами молекулы, должен,, конечно, дать значения энергий всех конформаций молекулы и, следовательно, высот барьеров и разностей энергий между поворотными изомерами. Однако вычисление тормозящего потенциала предъявляет особенно высокие требования к точности рез гльтатов, полученных с помощью приближенных квантовомеханических методов. Энергия торможения значительно меньше суммарной энергии молекулы, так что высоты барьеров и разности энергий между поворотными изомерами представляют собой при таком методе расчета малые разности больших величин. Поэтому до сих пор не существует достаточно строгого квантовомеханического расчета потенциальной кривой даже для простейшего случая молекулы этана. [c.53]

    Убедительные доказательства наличия поворотной изомерии в полимерах были получены Б. 3. Волчком и В. Н. Никитиным [93, И4 И7] которые наблюдали в поляризованном свете изменение интенсивностей инфракрасных полос поглощения, соответствующих различным поворотным изомерам, при растяжении поливинилацетата, полиэтилена, натурального кауч ка, гуттаперчи и полипропилена. Это явление--объясняется смещением равновесия между поворотными изомерами при растяжении, предсказанным теоретически. М. В. Болькенштейном и О. Б. Птицыным [Hs-isoj рд где изложена также развитая О. Б. Птицыным [i i] теория влияния этого эффекта на инфракрасные спектры). В случае натурального каучука [i S] удалось показать, что при растяжении увеличивается содержание того же изомера, что и при понижении температ фы, а в случае гуттаперчи [ i ] был продемонстрирован переход менее вытянутой кристаллической модификации а в более вытянутую (а- и р-формы гуттаперчи представляют собой не что иное, как два поворотных изомера, стабилизованные межмолекулярным взаимодействием),. [c.123]

    Наконец, еще один особый вид взаимного влияния (электростатического), о котором упоминал проф. Уразовский. Это взаимное влияние несвязанных атомов, приводящее к появлению поворотных изомеров. Это явление поворотной изомерии весьма важно для орх анической и физической химии. На основе этих явлений можно построить теорию линейных высокомолекулярных соединений. Такого рода попытку мы предпринимаем. [c.237]

    Стереохимия возникла как необходимое дополнение и углубление классической теории химического строения. А. М. Бутлеров в рамках этой теории блестяще решил долго мучившую химиков проблему изомерии, и тем не менее причину изомерии винных, молочных, фумаровой и малеиновой кислот впервые объяснил Я- Г. ВантТсх )ф. Бутлеров оперировал только последовательностью межатомных связей, Вант-Гофф, кроме этого, — я ах направленностью в пространстве. Бутлеров впервые предсказал и доказал изомерию бутанов, но мы теперь знаем, что один из изомерных бутанов — нормальный бутан — в свою очередь существует в виде смеси так называемых поворотных изомеров. А для сложных органических соединений формула химического строения чаще всего оказывается недостаточной для указаний на их важнейшие свойства, и выступает необходимость прибегать к пространственным моделям. Поскольку в современной органической химии все в большей степени объектом изучения становятся сложные соединения, образцом которых служат многие природные вещества, легко нднять, почему органическая стереохимия развивается бурными тейпами. [c.3]

    В настоящее время опыт, однако, поставил перед теорией поворотной изомерии дифенильного типа новые вопросы. Бастиансен и Треттеберг, в не раз уже цитированной работе, указывают, например, что исследования электронографическим методом 2,2 -дигало-гендифенилов привели к неожиданным выводам о том, что предпочтительная конформация приближается в пределах 60—80° не к транс-, а к цис-положению. Это наводит на мысль, что доминирующая роль принадлежит здесь не вандерваальсовому отталкиванию между атомами, а притяжению, обязанному силам типа лондоновских. Эти же авторы отмечают загадочное поведение 2,2 -дипиридина [c.316]

    Обратимся теперь к современной стереохимии. Рассмотрим в первую очередь ее, если можно так сказать, параметрический аспект. Методы изучения геометрии молекул дали очень много материала по межатомным расстояниям и валентным углам. В связи с этим появились феноменологические обобщения этого материала при помощи эмпирических формул, путем установления зависимостей между этими параметрами и типами и подтипами связей, а также посредством аддитивных схем, построенных на понятиях ковалентного и вандерваальсова радиуса. Те же физические методы исследования позволили установить, например, и строение наиболее устойчивых поворотных изомеров, обусловленных существованием потенциалов торможения вокруг простой С — С- связи, и даже величину этих потенциалов. С другой стороны, те же методы вместе с совокупностью данных, полученных химическими способами исследования, позволили далеко продвинуть вперед учение о конформациях циклогексана, его производных и других алициклов и подготовить почву для введения конформационного анализа, занимающегося изучением Зависимости свойств молекул от строения преимущественных конформаций. Далее, было установлено искажение требуемого классическими или даже электронными теориями копланарного строения многих типов соединений. Сюда относится отступление от копланарности алициклов — циклобутана и циклопентана — и молекул с сопряженной системой связей, причем характер такого искажения,например,в случае дифенила,бензфенантрена,гексаметилбензола и их аналогов неодинаков и обусловлен игрой различных структурных факторов. Характерной чертой, в буквальном смысле слова, современной стереохимии является также изучение пространственного строения органических радикалов и ионов, а также, хотя и в меньшей степени — здесь больше гипотез, и переходных комплексов. [c.353]

    Информация о наиболее мелкомасштабных релаксационных процессах (несколько звеньев цепи) может быть получена лишь на основе более детальных расчетов или моделирования на ЭВМ методами МД или БД ( см. гл. V). Лишь при таком подходе возможен корректный учет динамической и конформационной микроструктуры цепи (поворотно-изомерного состава и распределения изомеров вдоль цепи, барьеров внутреннего вращения, механизмов элементарных перескоков, не заложенных а priori, а вытекающих из реальной динамики). Подобная теория должна неминуемо терять универсальность и зависеть от характера конкретной молекулярной системы. [c.161]


Смотреть страницы где упоминается термин Изомерия поворотная теория: [c.802]    [c.224]    [c.69]    [c.29]    [c.163]    [c.138]    [c.269]    [c.295]    [c.138]   
Молекулярная биофизика (1975) -- [ c.130 , c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Изомерия поворотная

Поворотные изомеры

поворотные



© 2025 chem21.info Реклама на сайте