Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий комплексонат

    Если определяемые ионы металлов образуют кинетически инертные комплексонаты, обратное титрование можно осуществлять ионами металлов, образующими более устойчивые комплексонаты. Так, например, при определении ионов алюминия для обратного титрования можно пользоваться ионами железа (III), при определении ионов хрома (III)—ионами железа (III), тория (IV) или висмута (III). [c.226]


    Косвенные методы определения металлов. Катионы некоторых металлов, например алюминия, циркония и других, восстанавливаются с большим трудом или не дают четких полярографических волн. В этом случае используют различные косвенные методы, основанные на неодинаковой прочности комплексных соединений металлов. Так, цирконий можно определить следующим образом. К анализируемому раствору циркония прибавляют комплексонат кадмия [c.506]

    На рис. I представлена зависимость эффективной константы устойчивости комплексоната алюминия от pH [519]. [c.22]

    Определению алюминия не мешают значительные количества К, Na, Са и Mg. Допустимы до 30 мг марганца в 100—150 мл титруемого раствора. Железо титруется количественно, поэтому можно определять сумму А1 и Fe [719]. Хром может присутствовать только в небольших количествах [430], так как в кипящих растворах ускоряется образование его комплексоната. Титан мешает [430], и должен быть удален, это можно сделать экстрагированием его купфероната хлороформом. Цинк титруется на этом основано суммарное определение алюминия и цинка и введение поправки на содержание последнего [165,416]. Сульфат-ноны не мешают до 1,8 г, большие количества занижают результат [430]. Поэтому при разложении анализируемых образцов следует избегать введения сульфатов. [c.64]

    Алюминий с ксиленоловым оранжевым при рН>3 образует комплекс ярко-красного цвета, более прочный, чем комплексонат алю- [c.66]

    Метод основан на реакции между комплексонатом алюминия и фторидом натрия  [c.67]

    В этих условиях устойчивость оксихинолината алюминия значительно выше устойчивости его комплексоната, поэтому алюминий осаждается количественно. При использовании этого метода от алюминия отделяются многие металлы благодаря образованию цианид-ных комплексов и комплексонатов. Железо должно быть восстановлено до Ре (II). Для восстановления феррицианида применяют сульфиды [793], сульфиты [645, 702, 916, 1109, 1250] или просто кипячение щелочных растворов [585, 1061, 1196]. Лучшим восстановителем служат сульфиты. Определение 2—20 мг алюминия возможно в присутствии 0,5—1 г следующих элементов Ag, Аз (III), Аз (V), Аи, Сс1, Се (III), Се (IV), Со, Си, Ре (II), Ре (III), Ое, Н (I), Н (II), Ьа и РЗЭ, Mg, Мп,Мо (VI), N1, РЬ, Рс1, Pt, 5Ь (V), 5е (IV), 5е (VI), 5п (IV), Те (IV), Те (VI), Т1 (I), Т1 (III), Ш (VI), 2п и щелочноземельные металлы. Не мешает до 50 мг при больших количествах [c.82]

    Аналогичная методика использована для отделения Fe, Al и Ti от Мп [22]. Различие лишь в том, что после титрования железа и титана в раствор вводят из- быток комплексона III, устанавливают pH 3,3—4,4, кипятят 1 — 2 мин и пропускают через колонку с темн же катионитами. В этих условиях марганец не образует комплексоната и сорбируется катионитом, а алюминнй в виде комплексоната проходит в фильтрат, где определяют его, как указано выше. Метод нспользован для анализа металлургических шлаков, марганцевых руд. [c.184]


    Алюминий в виде комплексоната можно отделять от бериллия, пропуская раствор с pH 2,5—4,5, содержащий комплексон III, через катионит амберлит IRA-120 в Na -форме [1019]. [c.184]

    Для определения алюминия в промежуточных продуктах титанового производства (расплавы хлоридов, возгоны и др.) предложен комплексометрический метод, заключающийся в прямом титровании с индикатором ПАН в присутствии комплексоната меди после удаления мешающих элементов экстрагированием их купферонатов хлороформом [430]. [c.203]

    Комплексонат алюминия — довольно прочный комплекс с константой нестойкости 10 [490, 1154]. Однако, несмотря на это, процесс его образования протекает довольно медленно. Это объясняется склонностью алюминия к образованию гидратированного иона [А1 (НаО) ] ". Вследствие плотной упаковки молекул воды внутренней сферы гексаквоалюминиевого комплекса обменная реакция между ним и комплексоном III при обычной температуре очень мала. Прн нагревании до кипения эта обменная реакция протекает быстро. Кроме того, имеет значение и то, что уже в слабокислой среде алюминий образует полиядерные гидроксокомплексы типа Ala (ОН)Г, А1з(0Н)Ги т.д. до А1 (OH) i) [551, 1028, 1118,.1248], которые так же медленно реагируют с комплексоном III. Чтобы обеспечить количественное взаимодействие А1 с комплексоном III, растворы необходимо нагревать до кипения. Прямое титрование комплексоном III проводится в кипящих растворах, обратное [c.63]

    После отделения мешающих элементов едким натром алюминий можно определять прямым комплексометрическим методом в присутствии комплексоната меди и ПАН [1184]. Небольшие количества ванадия и молибдена не оказывают заметного влияния. [c.211]

    Заслуживает внимания тенденция соединений 2.3.19—2 3 21 к маскированию трехвалентных катионов. железо(1П) маскируется до рН=10,5—И (для 2.3.7 до рН=5—7), соединение 2.3 20 маскирует алюминий(1П) при рН=6—7. Наблюдается маскирование лантаноидов, причем преимущественно более тяжелых эрбий, тулий, иттербий, лютеций маскируются в отличие от остальных лантаноидов, выпадающих в виде малорастворимых комплексонатов при рН=4,5—6 [73] [c.248]

    Сущность работы. Определение основано на том, что раствор, содержащий ионы железа(1П) и алюминия, титруют стандартным раствором ЭДТА в присутствии сульфосалициловой кислоты при pH 2. В этих условиях образуется только комплексонат Ре , алюминий не мешает определению железа. [c.99]

    Для определения алюминия к той же самой пробе раствора добавляют избыток стандартного раствора ЭДТА, нагревают раствор до кипения, а остаток ЭДТА, не вступившего в реакцию с АР+, оттитровывают стандартным раствором железоаммонийных квасцов при pH 5. При этом значении pH ранее образовавшийся комплексонат железа(П1) не разрушается и не мешает определению ионов алюминия. [c.99]

    Титрование с ПАН и комплексонатом меди. Из прямых методов лучшим является титрование с индикатором 1-(2-пириднлазо)-2-нафтолом (ПАН) в присутствии небольших количеств комплексоната меди [7191. Алюминий титруют в нагретых до кипения растворах с pH 3. Алюминнй вытесняет медь из комплексоната, выделившаяся медь с ПАН образует окрашенный в красный цвет комплекс. После связывания всего алюминия комплексон III в конечной точке титрования разрушает комплекс меди с ПАН и окраска раствора нз красной переходит в желтую (комплексонат медн несколько прочнее комплекса медн с ПАН, соответствующие р/Снсст = 18,8 [347] и 18,3 [634]). [c.64]

    Титрование с индикаторной системой комплексонат ванадия — органический реагент. Принцип этого метода, предложенного Шайо [1135], тот же, что и метода Флашки и Абдине [719]. Он основан на вытеснении ванадия из его комплексоната рядом элементов, в том числе и алюминием. В качестве органического реагента, образующего окрашенное соединение с выделившимся ванадием, применяют дифенилкарбазон, пирокатехиновый фиолетовый, морин, карминовую кислоту титруют до обесцвечивания фиолетовой окраски (при pH < 5) или до перехода ее в бледно-розовую (при pH >5). [c.65]

    Титруют раствор, нагретый до кипения, в присутствии сульфо-салициловой кислоты, повышающей устойчивость комплексоната алюминия. Переход окраски от лиловой к красной Титруют до розовой окраски, вводят 1—2 капли 0,05Ж раствора Си (ЫОзЬ и титруют до изменения желтой окраски в оранжево-розовую Титруют в кипящих растворах до изменения красно-фиолетовой окраски в желтую Титруют кипяш,ие растворы до изменення окраски от синей к желтой [c.66]

    Влияние многих катионов можно устранить, если использовать прием, предложенный Шайо [ИЗО, 1131] избыток комплексона П1 оттитровывают раствором ацетата цинка, затем разрушают комплексонат алюминия нагреванием с фторидом и снова титруют раствором ацетата цинка. Расход титранта при втором титровании эквивалентен содержанию алюминия. Шайо в качестве индикатора применил бензидин и окислительно-восстановительную систему феррицианид — ферроцианид. Если этот индикатор заменить ксиленоловым оранжевым, то получается очень хороший, довольно специфичный метод, нашедший широкое применение в лабораториях. [c.67]


    Хром (III) образует окрашенный комплексонат сине-фиолетового цвета, что затрудняет фиксирование эквивалентной точки. По данным работы [854], до 30 мг Сг (III) не влияют на определение, при 40 мг фиксирование эксивалентной точки затруднительно, а при 60л г—титрование невозможно. Хроматыибихроматы не влияют на результаты определения алюминия. Поэтому Сг (III) лучше всего окислять до Сг (VI) до 50 мг Сг (VI) не мешает. Большие количества хроматов надо отделять от алюминия, например пропусканием анализируемого раствора после окисления хрома через катионит КУ-2 в Н -форме. При этом СГО4 проходит через колонку, а алюминий сорбируется смолой затем его извлекают кислотой и определяют описанным методом. Двухвалентные цветные металлы (Си. d, Со, Ni, РЬ) не влияют на определение алюминия. Однако некоторые из них (Си, Со, Ni) образуют окрашенные комплексонаты и затрудняют фиксирование эквивалентной точки. Кальций в значительных количествах (до 60%) не мешает [71], но следует учесть, что он связывает часть фтор-ионов. Поэтому при высоких содержа- [c.68]

    Титрование раствором железа с применением салициловой или сульфосали-циловой кислоты. Метод предложен Милнером и Вудхе-дом [976]. Широкому внедрению этого метода способствовали работы Башкирцевой и Якимец [42—46, 351]. Титрование обычно выполняется при pH 6. После кипячения анализируемого раствора с комплексоном III растворы перед титрованием охлаждают. При титровании неохлажденных растворов (pH 5) наблюдается нечеткий переход окраски в эквивалентной точке вследствие вытеснения железом алюминия из его комплексоната [976]. Милнер и Вудхед [976] получили очень хорошие результаты при титровании 2,5—60л<г алюминия (с относительной ошибкой 0,2—0,8%) при pH 6,5. Однако, согласно исследованиям Башкирцевой и Якимец [45], в присутствии мешающих ионов лучше титровать при pH 4,8, так как влияние других ионов в этом случае значительно меньше, чем при pH 6. При pH 4,8 магний не мешает, а при pH 6 может присутствовать до 80 мг его. В 100 мл анализируемого раствора могут быть при pH [c.71]

    Широко применяется последовательное титрование при разных pH, особенно при анализе смеси алю.миния и железа. Сначала при pH 1—2 титруют железо с индикатором сульфосалициловой кислотой. Затем создают pH 5—6, и избыток комплексона П1 оттитровывают раствором соли железа с тем же индикаторо.м. Описано множество аналогичных методов с применением других индикаторов для железа или же титрованиел алюминия другими методами. Иногда определяют сумму алюминия и железа, затем в другой аликвотной части определяют железо, а содержание алюминия находят по разности. Однако при этом не следует применять те методы, в которых разница между величинами pH, рекомендуемыми для определения Ре и А1, незначительна. Например, в работе [509] железо титруют прн pH 2 салициловой кислотой, а затем титруют алюминий при pH 3 с индикатором медь + ПАН. При определении алюминия и хрома в одном растворе использовано различие в прочности их комплексонатов при различных pH и в зависимости от продолжительности нагревания, так как комплексонат хрома образуется только после довольно длительного кипячения.В табл. 10 приведены способы определения алюминия в присутствии других металлов. [c.77]

    В этих условиях осаждаются Ве, В1, Оа, НГ, 1п, ЫЬ, 5Ь (Н1), Та, ТЬ, и и 2г. В присутствии скандня определяется только 80—90% алюминия. Сг (VI) осаждается неполностью в виде оксихинолината до 20 мг Сг (VI) мешает очень мало. Влияние Сг (III) значительно сильнее. Если содержание хрома < 20 мг, его влияние устраняют окислением до Сг(У1). Кроме того, хром можно связать в комплексонат кипячением с комплексоном 111 в течение 5 мин., при этом железо должно быть восстановлено кипячением с сернистой кислотой. Фториды до 1 мг не мешают, большие количества занижают результаты, даже в присутствии большого избытка НдВОз. Ортофосфаты не мешают, если не присутствует одновременно более 100 мг Ре (фосфаты препятствуют полному восстановлению Ре). Ванадий осаждается неполностью. Влияние ванадия меньше при рН<9. Титан полностью осаждается в виде оксихинолината при pH 9 и ниже, при pH >9 осаждение неполное. [c.83]

    По Бабачеву [539], при определении алюминия в смеси с Fe, Сг, Са и Mg сначала в анализируемом растворе (pH 1,5—2) титруют железо комплексоном III с сульфосалициловой кислотой. К оттитрованному раствору добавляют избыток комплексона III для связывания алюмнння н хрома, после нагревания до кипения устанавливают pH 5 и продолжают кипятить 10 мин. Холодный раствор вводят в колонку с КУ-2 или вофатитом KPS-200 в аммонийной форме. При этом кальций и магний сорбируются. Колонку промывают водой и в фильтрате после разрушения комплексоната алюминия добавлением NaF титруют потенциометрически освободившийся комплексон III, эквивалентный содержанию алюминия, раствором ацетата цннка в присутствии ферри- и ферроцианида. [c.184]

    Предложено отделять титан от алюмнния при пропускании их смеси (pH 1—2), содержащей комплексон III и HjOj, через колонку с катионитом дауэкс- V50 X 8 [757], Титан в виде комплексоната проходит в фильтрат, алюминий сор- бируется. Его элюируют 50 мл 4 N НС1. [c.184]

    Анализируемый раствор обрабатывают комплексоном III, затем подкисляют до pH 2, добавляют5—Южл 6%-нои HjOj и кипятят 2 мин. После охлаждения раствор пропускают через колонку скатионитом амберлит 1R-120 при этом комплексонат алюминия разрушается и алюминий поглощается катионитом, а кобальт проходит в фильтрат. Алюминий затем десорбируют 4Л H I. [c.184]

    Аналогичный метод описан для определения алюминия в хромовых рудах и огнеупорах после сплавления образца с КН504 1507]. В растворе плава устанавливают pH 4—6, кипятят для образования комплексонатов Ре(1П), А1 и Сг (П1). Вводят оксихинолин, подщелачивают аммиаком, нагревают при вО"" С для осаждения оксихинолинатов Ре (И1) и А1. Спустя 10 мин. фильтруют, осадки растворяют в НС1. В растворе определяют железо и алюминий, как и при анализе марганцевых руд, но в этом случае индикатором для Ре (III) служит освободившийся из раствора оксихинолин. Присутствие последнего не мешает титрованию алюминия Сг(П ) маскируется комплексоном III и не мешает. [c.197]

    К аликвотной части раствора прибавляют известный объем комплексона III для связывания А1, Fe и Ti, устанавливают pH 5—6 с помощью ацетатного буферного раствора, вводят винную кислоту и раствор (NH4)2HP04 для разрушения комплексоната титана. Избыток комплексона III титруют раствором Z n Ij по дитизону. Затем для разрушения комплексоната алюминия вводят насыщенный раствор NaF и освободившийся комплексон III титруют также. Расход Zn lj во втором титровании эквивалентен содержанию алюминия. [c.200]

    При рН 5 оттитровывают избыток комплексона П1 раствором цинка по ксиленоловому оранжевому. Затем вводят 10—15мл 20%-ного раствора винной кислоты, устанавливают необходимую среду и титруют освободившийся комплексон III, эквивалентный содержанию титана, раствором цинка. К оттитрованному раствору прибавляют фторид, разрушают комплексонат алюминия и освободившийся комплексон III, эквивалентный содержанию алюминия, оттитровывают раствором цинка. [c.211]

    Увеличение числа метиленовых звеньев между атомами азота с л=2 до п = 3 весьма неоднозначно влияет на устойчивость нормальных комплексонатов. Так, по рентгеноструктурным данным, строение комплексоната кобальта(П1) с триметилен-диаминтетрауксусной кислотой [ otrdta] аналогично строению [ oedta]h с гексадентатным в обоих случаях лигандом [238] Устойчивость этих комплексонатов в водных растворах также практически одинакова [182]. Не изменяется значение константы устойчивости комплексонатов при переходе от ЭДТА к ТМДТА и в случае алюминия(1П), галлия(1П), ме  [c.178]

    Данные об устойчивости комплексонатов железа (III) с НТФ весьма противоречивы так, в [348] для, [Fentph] " приводится значение lg/ ML=14,60 (при 20°С и (г = 0,1), а в [319]—21,37 (при 25 °С и (1 = 0,1) Встречаются значительные расхождения и для комплексонатов аминофосфоновых лигандов с другими катионами. Здесь уместно отметить, что для данного типа лигандов характерно медленное установление равновесий, особенно в гетерогенных системах. Например, для систем железо (III)— НТФ достижение равновесия раствор — осадок при комнатной температуре требует не менее 4 суток, а у некоторых комплексонатов алюминия— двух-трех недель [336]. Медленно устанавливаются равновесия и в гомогенных растворах. Пренебрежение указанным обстоятельством может приводить к значительным погрешностям в определении констант устойчивости. Другим источником ошибок может служить наличие почти у каждой системы металл — лиганд областей осадкообразования [c.197]

    Например, при титровании раствора, содержащего комплексонат алюминия [А1п1рЬ] , после очередного добавления щелочи или кислоты равновесие достигается в течение нескольких часов [c.203]

    При соотношении металл лиганд 2 1 и выше, фосфорсодержащие комплексоны образуют с бериллием плохо растворимые полиядерные соединения. Сопоставление устойчивости комплексов трехвалентных непереходных элементов Ifl группы алюминия, галлия, индия и таллия показывает, что устойчивость в ряду нормальных моноядерных комплексонов с лигандами аминокарбонового ряда неизменно возрастает в последовательности Al нитрилтриацетатов значения IgA ML соответственно равны 11,4, 13,6 16,9 и 20,9 [182] (при 20—25°С и р, = 0,1—1,0). В случае комплексонатов ДТПА последовательность сохраняется, но для аналогичных условий устойчивость комплексов выше на 7— 25 порядков 1дК мь=18,6 25,54 29,0 46,0 [182]. Комплекс таллия (П1) [Tldtpa]2- является самым прочным из известных в настоящее время для этого лиганда [182]. [c.359]

    Интересный эффект отмечается для алюминия (П1) Устойчивость комплексонатов этого, одного из самых небольших по размерам катионов монотонно возрастает в ряду лигандов НТА —ЭДТА —ДТПА —ТТГА [182]. Между тем координационное число алюминия во всех структурно исследованных комплексонатах постоянно и равно шести [238]. Такое поведение по мере возрастания дентатности лигандов резко отличает атом алюминия от близкого ему по размерам атома магния. Для последнего увеличение в составе молекулы лиганда числа донорных атомов свыше шести, а также общего заряда лиганда в указанном ряду не сказывается на устойчивости комплексных соединений [c.359]

    По-видимому, у алюминия в отличие от магния рост устойчивости при переходе от комплексонатов ЭДТА к производным ТТГА вызван заменой в координационной сфере металла связей AU —Окарб на А1" —N при сохранении к. ч 6. [c.359]

    Увеличение устойчивости комплексонатов при переходе от производных алюминия к таллию (П1), очевидно, связано помимо отмеченного у высокодентатных комплексонов возрастания числа хелатных циклов и чисто электростатического взаимодействия также и с нарастанием поляризующего действия благодаря наличию сформированной оболочки -электронов. [c.359]

    Разнолигандные комплексы обладают значительной устойчивостью. Вероятность их образования нарастает с увеличением радиуса при переходе от алюминия к таллию и по мере уменьшения дентатности комплексона. В случае индия, как правило, число входящих в координационную сферу монодентатных лигандов не превышает трех например, известны весьма устойчивые комплексонаты [In (S N)3ida]2-, [In(S N)3nta] ", [In(S N)2edta]3-. Комплексонаты индия успешно используются для получения сплавов индия и золота из щелочных сред [284] [c.360]


Смотреть страницы где упоминается термин Алюминий комплексонат: [c.100]    [c.67]    [c.70]    [c.73]    [c.133]    [c.135]    [c.171]    [c.179]    [c.190]    [c.195]    [c.196]    [c.360]   
Химический анализ в ультрафиолетовых лучах (1965) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексонаты

Комплексы алюминия комплексонаты



© 2025 chem21.info Реклама на сайте