Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лиганды перенос зарядов

    Комплексы переходных металлов. Лиганды. Геометрические изомеры. Октаэдрическая структура, плоская квадратная структура и тетраэдрическая структура. Парамагнетизм и диамагнетизм. Лабильность и инертность. Взаимосвязь степени окисления центрального атома и структуры комплекса. Влияние числа /-электронов металла на структуру комплекса. Перенос заряда. [c.204]


    В производное кобальта(П) [41]. Исследования показали, что медь(П) и кобальт(П) конкурируют за одно и то же место в белке. Поскольку спектры соединений, содержащих кобальт(П), интерпретировать легче, чем спектры производных меди(П). авторы смогли прийти к выводу кобальт находится либо в центре искаженного тетраэдра, либо в пятикоординационном окружении. Интенсивная линия переноса заряда указывает на существование связи Со — SR. Отнесение всех линий спектра нативного медьсодержащего белка было проведено по аналогии. Существование порфириновых комплексов в ферментных системах можно установить по наличию в спектре характеристической полосы Соре в области 25 000 см . Эта полоса обусловлена связанным с лигандом переходом я -> я типа перехода с переносом заряда (см. гл. 5). В электронных спектрах порфириновых комплексов обнаружены также две другие полосы низкой интенсивности. Существование этих полос и их сдвиги при введении заместителей в циклы можно понять, проведя расчеты по методу МО [42]. Положения этих полос использованы для классификации цитохромов. [c.109]

    Большинство комплексов переходных металлов — окрашенные соединения, т. е. они способны поглощать энергию в видимой области спектра. При изучении спектров поглощения этих соединений в твердом состоянии и в растворенном в различных растворителях обнаружено, что они поглощают световую энергию также и в ультрафиолетовой области. Полагают, что полоса или полосы поглощения, найденные в видимой части или в близкой ультрафиолетовой и инфракрасной областях спектра, характеризующиеся относительно низкими значениями мольных коэффициентов погашения (мало интенсивные) порядка 0,1—100, обусловлены переходами электронов центрального иона между расщепленными энергетическими уровнями, расстояние между которыми определяется силой и симметрией данного поля лиганда. Поэтому эти переходы называют <1—с1-переходами-, их слабая интенсивность вызвана, по крайней мере для свободного иона, тем, что эти электронные переходы запрещены правилами отбора. В ультрафиолетовой области полоса или иногда наблюдаемое сплошное поглощение имеют значительно большую интенсивность. Мольные коэффициенты погашения здесь обычно падают в пределах от 1000 до 10. Полагают, что в данном случае они обусловлены переходом электрона от одного компонента к другому. Как правило, это означает переход электрона от лиганда, который как основание или восстановитель, по-видимому, имеет больший избыток электронов, чем центральный ион. Такие спектры называют спектрами переноса заряда, и они характеризуют не только координационные [c.294]


    После координации происходит сдвиг а-электронной плотности в лиганде вдоль системы о-связей по направлению к атому металла и частичный перенос заряда с лиганда на металл. Таким образом, эффективные заряды обеих частиц уменьшаются по абсолютной величине. Использование при координации такой электронной пары, которая в свободном лиганде участвовала в л-сопряже-нии, выводит ее из сопряжения. При этом л-электронная плотность смещается от атома металла. Один из ярких примеров — координация ионом Р1 + ацетилацетонат-иона (Асас ) через атом углерода С  [c.21]

    Происхождение квадратичных уравнений тина (7.31) интерпретируется с помощью представлений о переносе заряда с лиганда на центральный катион. Из них вытекает, что линейные вклады донорных атомов h должны изменяться симбатно второму потенциалу ионизации /12 в частности, для донорных атомов азота справедливо соотношение [c.371]

    Возбуждение в области полос переноса заряда сопровождается окислительно-восстановительными реакциями, ведущими к изменению степени окисления металла или лиганда, например [c.377]

    В н у т р и с ф е р н ы й перенос электрона. При возбуждении комплекса в области переноса заряда L M часто образуются свободные радикалы, происходящие от координированных лигандов Так, при фотолизе комплексов Се + с карбоновыми [c.378]

    Третьим типом интенсивных полос поглощения являются полосы переноса заряда, которые отвечают переходу электрона с орбитали, локализованной преимущественно на лиганде, на орбиталь, локализованную, в основном, на центральном атоме или наоборот. Переходы такого рода можно рассматривать как внутримолекулярные процессы окисления — восстановления. Они особенно характерны для комплексов центральных атомов, имеющих несколько степеней окисления. [c.124]

    Рассматривая табл. 44, видим, что ход изменений энергии разрыва связи в случаях двухатомных молекул отличается от хода, характеризующего одиночные связи в молекулах многоатомных. Межъядерные расстояния г для одиночных связей заметно увеличены (за исключением Р—Р и Р—С1) и перекрывание идет уже за счет более диффузных частей электронных облаков по а-связи, а связь, упрочненная примесью л-связей (с переносом заряда от лиганда к Р), образуется только для Р — Р и Р — С1. Энергии связи монотонно падают отР — РкР — С, а также от Р — С1 к Р — 51. Связь С — Р выдерживает длительное нагревание при температурах, выше 100° С сравнительно устойчива связь С — Р и по отношению к гидролитическому воздействию. [c.273]

    Координационные соединения металлов с неокрашенными лигандами. Окраска обусловлена переносом заряда металл — лиганд. Такие соединения образуют металлы с различными степенями окисления 1, N5, Мо, Ре, Си и др. Например, соединения Т и N5 с пероксидом водорода, соединения этих же металлов, а также Мо , Ре с полифенолами, салициловой кислотой, роданидные комплексы Ре" и Мо ", комплексы Си с дипиридилом и фенантролином и др. [c.310]

    Если электрон, поглощая квант света, переходит с е-уровня на 7, возникают полосы поглощения, называемые в ТКП d — -спектрами. Спектры переноса заряда в ММО интерпретируются как результат поглощения световой энергии, связанного с переносом электрона со СМО, локализованных у лигандов, на НМО или РМО комплексообразователя. Эти полосы обычно располагаются в ультрафиолетовой части спектра и характеризуются большой интенсивностью. Для 120 [c.120]

    Конечно, основной вклад в образование химической связи дают ближние взаимодействия резкое снижение энергии системы начинается вместе с переносом заряда с лиганда на катион Процесс электронного обмена дпя лигандов-аналогов происходит практически одинаково и не зависит от удаленных заместителей Тем не менее и полевой эффект при введении заместителей приводит к заметным изменений прочности связи металл-лиганд [c.186]

    Поглощение, обусловленное полем лигандов и переносом заряда [c.153]

    Переходы с переносом заряда являются разрешенными, и такие комплексы часто интенсивно окрашены. В отличие от комплексов, окраска которых обусловлена собственной окраской лиганда, комплексы с переносом заряда могут быть окрашены, даже если свободный лиганд бесцветен. [c.161]

    Одной из наиболее валшых проблем в области нeopгaничe кoii химии является установление причин прочности связей, в комплексных попах. Так, и Со обычно очень медленно обменивают связанные с ними группы атомов (лиганды). С другой стороны, АР и Ре обменивают лиганды, такие, как Н2О и СГ, очень быстро. Как мы уже видели, такое поведение тесно связано с вопросом о скоростях окислительно-восстановительных реакций и с переносом заряда. Однако эта связь не одинакова во всех случаях, так как такие комплексы, как Ре (СХ)2 и Ре ( N) ", в которых лиганды очень инертны, легко вступают в реакции с передачей заряда. Таубе [163] дал решение этих вопросов на основании орбитальной модели валентно11 оболочки ионов. Недавно была сделана попытка более количественного решения этих проблем на основании рассмотрения влияния электрических полей лиганд на относительную энергию орбит центрального иона, которые в отсутствие этих электрических полей эквиваленты. (Эта теория получила название теории кристаллического ноля [164] в применении к неорганической химии эта теория была подробно исследована в монографии [165].) [c.524]


    На примере этого ряда комплексов можно показать, как связаны окраска и строение координационных соединений переходных металлов. Фотоны надлежащей энергии способны возбуждать электроны, перенося их с атомов кислородных лигандов на пустые -орбитали иона металла. Этот процесс называется переносом заряда, и именно он в большинстве случаев обусловливает окраску комплексов переходных металлов. Чем выше степень окисления металла, тем легче осуществляют указанный переход электроны и тем ниже энергия, необходимая для их переноса. Поглощение фотонов соответствующей энергии в комплексе УО приходится на ультрафиолетовую часть спектра, поэтому ион УО бесцветен. В комплексе СгО поглощение фотонов происходит в фиолетовой области видимого спектра, что соответствует волновым числам около 24 ООО см поэтому растворы хромат-ионов имеют желтую окраску (дополнительные цвета указаны в табл. 20-3). (В спектроскопии принято выражать энергию фотонов в волновых числах, которые измеряпотся в обратных сантиметрах, см см. разд. 8-2.) Ион Мп + имеет самую высокую степень окисления и при возбуждении с переносом заряда поглощает зеленый цвет (приблизительно при 19000см ), этим и объясняется пурпурная окраска иона МпО ". Окраска комплексов, в которых происходят электронные переходы с переносом заряда, обычно очень интенсивна, что указывает на сильное поглощение света. Повышение размера центрального атома затрудняет перенос заряда и сдвигает поглощение в ультрафиолетовую область поэтому комплексы МоО , WOr и КеО бесцветны. [c.215]

    С(Д4—Дд) и АЕ, (транс) = 2С(Д — Дд), где С — постоянная, обычно <1. а Д и Дд—расщепление в кристаллическом поле лигандов А и В (т. е. положение этих лигандов в спектрохимическом ряду), а знак минус объясняет тот факт, что энергии Е и А2д меняются местами в цис- и трамс-комплексах]. Обычно, если Д и Дд заметно различаются, расщепление и Е приводит для к дублету в спектре транс-комплекса, в то время как в спектре нс-комплекса эта полоса просто ущиряется [22]. Установлено также, что нс-изомеры часто характеризуются больщей величиной коэффициента поглощения для d — /-переходов, чем транс-изомеры. Типичные спектры таких комплексов приведены на рис. 10.18. Если и Дд имеют близкие величины, указанным критерием пользоваться нельзя. Ультрафиолетовую линию переноса заряда можно также использовать для того, чтобы различить цис-и транс-комплексы кобальта (III), поскольку частота полосы цис-ком-плекса обычно выше. Бензоилацетонаты Сош и Сгш служат примером таких комплексов, в которых А и Дд почти равны, а шранс-комплекс характеризуется больщим г [24]. [c.101]

    За формирование аналитического сигнала ответственными являются d— -d переходы, переходы, с переносом заряда d—>-л, я— d и л—-переходы.ii— - -Переходы характер- ны для аква-ионов и некоторых комплексов соединений d-эле-JweHTOB с неполностью заполненными d-орбиталями, когда возможность осуществления переходов возникает вследствие нарушения симметрии распределения электронной плотности и расщепления основного электронного состояния иона металла в поле лиганда. Переходы с переносом заряда возможны при наличии в молекуле или сложном ионе доноров и акцепторов электронов, когда имеет место электронный переход с орбитали, локализованной на атоме акцептора, на орбитали, локализованные на атоме донора или, реже, наоборот, что, например, объясняет интенсивную окраску тиоцианата железа (1П), гетерополисоединений, сложных ионов типа М.ПО4 , Сг04 , комплексов -элементов с бесцветными органическими реагентами, например, никеля с диметилглиоксимом, железа с 1,10-фенантроли-ном и молекул органических соединений, когда в них одновременно входят электронодонорные и электроноакцепторные заместители. [c.55]

    Аналогично были исследованы комплексные соединения двухвалентной меди с бис-8-гидроксихинолином, 3-фенил-р-аланином и диэтилдитиокарбаминовой кислотой. Спектрофотометрическим методом изучалось воздействие высокого давления до 12 ГПа на эти соединения Найдено смещение полос электронных спектров погло щения, что свидетельствует о переходе электрона с переносом заряда типа Си+-(-лиганд. Определены характеры переходов с переносом заряда, и на основании этого сделана оценка процент1Юго содержания Си+ в системе. Было доказано, что процесс восстановления Си-+- Си -обратим при снижении давления до атмосферного. [c.167]

    Кроме полос интраконфигурационных (й —d,f—f) переходов в спектрах комплексных соединений могут наблюдаться также интенсивные полосы так называемых интермолекулярных переходов, которые лежат в УФ-области и примыкающей к ней части области видимого спектра. Это — полосы переноса заряда. Они возникают при поглощении квантов света, вызывающих переход электрона с МО, локализованной на лиганде, на МО, локализованную на центральном атоме, или наоборот, т. е. при внутримолекулярном окислительно-восстановительном процессе. К интермолекулярным относятся также так называемые Ридберговы полосы в УФ-спектре, связанные с возбуждением электронов центрального атома (изменение квантовых чисел п или I). [c.246]

    Зй-Орбитали начинают заполняться в атоме скандия, в Зс1-обо-лочке атома хрома уже пять электронов (на внешней оболочке всего один 5-электрон). В атоме меди З -оболочка заполнена десятью электронами. Волновые функции основного и возбужденного состояний не являются чистыми -функциями. Примесь р-функций приводит к тому, что становятся возможными такие электронные переходы, которые вообще запрещены. Это отпосится к переходам между уровнями с одним и тем же значением квантового числа I. Фактически по указанной причине в спектре поглощения соединений переходных металлов с неспаренными электронами наблюдаются максимумы поглощения ( пики ) в видимой и инфракрасной областях. Интенсивность их невелика, но они обусловлены й— -переходами. Многие комплексы дают также иитсн-сивные пики поглощения в ультрафиолетовый области, обусловленные переносом заряда иона металла на орбитали присоединенных к нему групп (лигандов). [c.200]

    Основные области применения ОргАР в химическом анализе — образование окрашенных соединений, малорастворимых соединений и повышение аналитической избирательности (селективности реакций). Образование окрашенных соединений важно для целей качественного анализа. Окраска внутрикомплексных соединений часто очень яркая, что обусловлено, помимо рассмотренных в разд. 2.2 факторов, переносом заряда (переходом электронов с орбиталей лиганда на орбиталь атома-комплексообразователя и переходами электронов внутри лиганда). [c.70]

    К лигандам, отдающим электроны, относятся, например, гало-генид-ионы. Интенсивность и длина волны полос переноса заряда растут в ряду С1 < Вг < 1 . К. переходам этого типа принадлежат интенсивные полосы 36 500 и 43 960 смг для комплекса (Со(ЫНз)5С1]2+, 31 800 и 39 450 м- для [Со(ЫНз)5ВгР+ и 26 110 и 34 930 смг для [Со(ЫНз)51 Легко протекающий перенос [c.124]

    В координационной теории реакцию между реагирук>щими веществами (водородом и непредельной молекулой при гидрогенизации) можно рассматривать как взаимодействие лигандов, присоединенных к одному и тому же иону или ато му катализатора. Через центральный атом происходит обмен электронами с изменением его степени окисления (комплексы с переносом заряда). [c.172]

    Если электрон, поглощая квант света, переходит с t2g уровня на eg, возникают полосы поглощения, называемые в ТКП й-й-спектрами. Поскольку электронная плотность несвязывающих гг и разрыхляющих МО в значительной мере сосредоточена вблизи комплексообразователя, описание происхождения этого вида поглощения в ММО и ТКП по сути дела однотипно. Спектры переноса заряда в ММО интерпретируются как результат поглощения световой энергии, связанной с переносом электрона со СМО, локализованных у лигандов, на НМО или РМО комплексообразователя. Эти полосы обычно располагаются в ультрафиолетовой части спектра и характеризуются большой интенсивностью. Энергия максимума полосы поглощения падает по мере роста окислительной активности комплексообразователя и восстановительной силы лигандов. Для комплексообразователей -подгрупп Периодической системы с ростом порядкового номера максимум полосы поглощения смещается в коротковолновую сторону. Это находится в соответствии с ростом устойчивости высших степеней окисления для -элементов Периодической системы сверху вниз. [c.172]

    Установлено, что независимо от природы В1-лиганда и металла низшим спин-разрешенным оптическим переходом для координационно-ненасыщенных [М(1ру)С1(В1)] комплексов является переход с переносом заряда метал-циклометал-лирующий лиганд (с1-л )-типа. Изменение природы металла Р1->Рё приводит к гип-сохромному сдвигу низшей полосы поглощения (с1-я )-типа в результате дестабилизации с1-орбиталей металла. Электронные спектры гомо- и гетероядерных комплексов в основном определяются суперпозицией полос поглощения, образующих их металлокомплексных фрагментов, что свидетельствует о слабом взаимодействии между ними и позволяет рассматривать [М(1ру)С1(В1)] (М= Р1(11), Р<1(11)) и [М (Ьру)2С1(В1)] (М = Яи(П), 08(11)) в качестве хромофорных структурных единиц . Показано, что эффективность взаимодействия между металлокомплексными фрагментами в биядерных системах уменьшается как с увеличением протяженности мостикового В1-лиганда, так и при различной симметрии лигандгюго окружения металлофрагментов. [c.56]

    Спектры неорганических и комплексных соединений. Различают полосы поля лигандов d—d-иереходы центрального атома), полосы переноса заряда (внутри молекулы эти переходы обладают большими силами осциллятора, чем d— /-переходы), собственные полосы лигандов (вереходы внутри самих лигандов). [c.237]

    В координац. соединениях переходных металлов атомные орбитали центр, иона взаимод. с орбиталями лигандов с образованием молекулярных орбиталей комплекса. В зависимости от симметрии комплексов нек-рые атомные орн битали сохраняют свою энергию и остаются вырожденными. Поэтому в основном состоянии могут реализоваться т. наз. высокоспиновые состояния ионов, когда неск. электронов с одинаковыми спинами расположены по одному на вырожденных атомных орбиталях. В. с. координац. соединений получаются в результате перехода электронов молекулярных орбиталей лиганда на вакантные атомные орбитали металла (состояния переноса заряда лиганд-металл-LU T), с атомных орбиталей иона металла на вакантные молекулярные орбитали лигандов (состояния переноса заряда металл-лиганд-ML r), между атомными орбиталями иона металла или между молекулярными орбиталями лигандов. Электронные В. с. координац. соединений также обозначают, основываясь на теории групп симметрии, в соответствии со св-вами симметрии электронной волновой ф-ции. [c.409]

Рис. 9.1-8. Спектры, обусловленные переносом заряда и полем лигандов в тетраме-тилендитиокарбаматных комплексах Ре(1П) (о) и Сг(1П) (б), используемых для количественного анализа микроколичеств металлов. Рис. 9.1-8. Спектры, обусловленные <a href="/info/3058">переносом заряда</a> и <a href="/info/16519">полем лигандов</a> в тетраме-тилендитиокарбаматных комплексах Ре(1П) (о) и Сг(1П) (б), используемых для <a href="/info/5094">количественного анализа</a> микроколичеств металлов.
    Они участвуют в так называемой неспецифической сольватации. Для крупных молекул она может быть велика [84]. Она определяется в основном силами диполь-дипольного взаимодействия химических связей растворенных молекул и растворителя, слабым переносом заряда между ними (71-л -взаимодействие) и др. Реакционный центр порфириновых лигандов H2N4, состоящий из двух электронодонорных центров = и двух протонодонорных =NH, надежно экранирован (жесткий макроциклический эффект) от реагентов и в слабо агрессивных растворителях не вступает в заметной степени в специфическое кислотно-основное взаимодействие. Поэтому почти полностью значения АЛсол1, порфириновых лигандов характеризуют неспецифическую сольватацию [85]. [c.274]

    Одной из главных структурных особенностей молекул металлопорфиринов является наличие сопряженной л-системы, определяющей возможность сольватационных взаимодействий соединений данного класса с разнообразными ароматическими молекулами, которые могут носить как универсальный, так и специфический характер. Металло-комплексообразование понижает ароматичность л-системы макроцикла в металлопорфирине по сравнению с соответствующим лигандом и создает благоприятные условия для специфических л-л-вза-имодействий, приводящих к образованию л-л-комплексов как с ароматическими л-донорами, так с л-акцепторами. Взаимодействия данного типа вносят значительный вклад в формирование надструктуры хромопротеинов [14, 17], агрегацию порфиринов в растворах, образование комплексов "хозяин-гость" в кристаллах, конформационные свойства порфиринсодержащих биоструктур. Поэтому комплексообразование между порфиринами и различными ароматическими молекулами (кофеин, фенантролинпроизводные, виологены, аминокислоты, нуклеиновые кислоты и т.д.) [18, 19] изучается достаточно интенсивно. Предполагают, что комплексы данного типа образуются за счет л-л-взаимодействий между ароматическими л-системами порфиринового макроцикла и молекулярного лиганда, которые могут иметь гидрофобный (донорно-акцепторный) характер или сопровождаться переносом заряда. При этом энергия взаимодействия между двумя молекулами в л-л-комплексе может быть представлена [20]  [c.306]

    Помимо электростатических взаимодействий, дополнительная стабилизация внешнесферных комплексов может иметь место за счет образования водородных связей, переноса заряда и донорно-акцепторных взаимодействий между лигандами внутренней и внешней сфер. Такие специфические взаимодействия лигандов проявляются, например, в изменении окраски при образовании внешнесферного комплекса. Так, комплекс серебра с бромпиро-гаплоловым красным (Ь) окрашен в желтый цвет, а в присутствии фенантро-лина образуется голубой комплекс состава [А (РЬеп)2Г Ь". На основе этой реакции разработан чувствительный и селективный спектрофотометрический метод определения серебра. Для спектрофотометрического определения многих элементов (Си(П), 2п(11), С<1(11), А1(Ш), Са(Ш), 1п(Ш), 8с(111) и др.) используют ионные ассоциаты их окрашенных хелатов с по- [c.143]

    Окраска комплексов, как и любых щ>угнх химических частиц, обусловлена особенностями их электронного строения, а именно — возможностью переходов валентных электронов между орбиталями, разность энергий которых соответствует энергиям фотонов видимой области электромагнитного спектра (диапазон длин волн 400—750 нм см. гл. 11). Молекулярные орбитали комплекса, обусловливающие их окраску, могут быть локализованы преимущественно на центральном атоме или лиганде либо принадлежать всему комплексу в целом. В соответствии с этим различают три основных вида оптических электронных переходов 1) переходы между орбиталями центрального атома (d - d, f - J) 2) переходы между орбиталями лиганда я-я, и - >г ) 3) переходы с переносом заряда. [c.159]

    Переходы с переносом заряда. В этом случае за возникновение окраски ответственны молекулярные орбитали, которые возникают только щ)и образовании комплекса и принадлежат комплексу в целом. Эти орбитали охватывают как я- электронную систему лиганда, так и -электронную систему центрального атома. Поэтому такие окрашенные комплексы могут образовывать только переходные элементы. Классический гфимер комплекса, окраска которого обусловлена электронными переходами рассматриваемого типа — диметилглиоксимат никеля. При образовании этого комплекса возникает единая сопряженная система с участием я - орбиталей димегилглиоксима и -орбиталей никеля  [c.160]


Смотреть страницы где упоминается термин Лиганды перенос зарядов: [c.499]    [c.233]    [c.107]    [c.243]    [c.247]    [c.63]    [c.126]    [c.386]    [c.70]    [c.46]    [c.51]    [c.484]    [c.153]    [c.155]    [c.307]   
Современная химия координационных соединений (1963) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Заряженный лиганд

Перенос заряда



© 2025 chem21.info Реклама на сайте