Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Винилацетат строения мономеров

    Считается, что в неполярных растворителях ионная пара избирательно сольватирована более полярным мономером, в результате чего увеличивается скорость его взаимодействия с катионом. Полярные растворители вытесняют мономеры из сольватной оболочки, поэтому относительная активность мономеров определяется в основном особенностями их химического строения. Получен следующий ряд активностей мономеров в присоединении к карбониевым ионам виниловые эфиры изобутилен > стирол > винилацетат > изопрен > бутадиен. Как видно, изобутилен является одним из наиболее активных сомономеров. [c.193]


    Типичными примерами могут служить системы стирол — акрило-нитрил, винилхлорид — диэтилфумарат и винилацетат — кротоновая кислота (рис. 1.1). Влияние строения мономера на порядок чередования звеньев иллюстрируется рис. 1.2, на котором приведены кривые состава сополимеров стирола с акрилонитрилом, метакрило-нитрилом и фумаронитрилом. Более подробно роль заместителей в процессе сополимеризации рассмотрена в следующих главах. Примечательно, однако, что наличие двух нитрильных групп на противоположных концах двойной связи увеличивает тенденцию к чередованию. [c.14]

    В последние годы широкое применение нашли сополимеры стирола с ненасыщенными полиэфирами. Такие полиэфиры получают этерификацией гликолей малеиновой или фумаровой кислотами (полималеинаты, полифумараты) или этерификацией смеси гликолей и глицерина акриловой или метакриловой кислотами (полиакрилаты, полиметакрилаты). Образующиеся полиэфиры имеют линейную структуру и растворимы в стироле, метилметакрилате, винилацетате и многих других мономерах. В присутствии инициаторов происходит сополимеризация компонентов раствора с образованием пространственных сополимеров следующего строения (для случая сополимеризации полигликольмалеината и стирола)  [c.530]

    Термопластичные полимеры приобретают густосетчатую структуру при взаимодействии с некоторыми полифункциональными соединениями, называемыми в производстве пластических масс отвердителями. Для низкомолекулярных феноло-формальдегидных полимеров типа новолаков отвердителем служит гексаметилентетрамин, для полиэпоксидов—феноло-формальдегидные полимеры резольного типа и лишь в отдельных случаях полиамины (полиэтиленполиамины), для полисилоксанов в зависимости от их строения—перекиси или тетраэтоксисилан для линейных ненасыщенных полиэфиров (полималеинатов)—ненасыщенные мономеры (стирол, винилацетат, диаллилфталат). [c.530]

    При сополимеризации используют различные мономеры производные стирола, акрилатов, а также целый ряд эластомеров. Применение эластомеров различного строения, в то.м числе химически стойких эласто. меров на основе акриловых эфиров, хлорированного полиэтилена, сополи.мера этилена с винилацетатом и др., позволило резко улучшить физико-механические свойства образующихся полимеров, разработать ряд систем (АБС-пластиков), обладающих ударопрочностью, атмосферостойкостью и т. д. [2, 3]. [c.188]


    Для обнаружения таких последовательностей была применена реакция окисления йодной кислотой, которая является специфической для 1,2-гликолей. Изучение зависимости содержания 1,2-гликолевых групп в полимере от температуры полимеризации приводит к заключению о небольшом различии между энергиями активации обеих реакций роста (а) и (б) для винилацетата. В связи с этим даже в области довольно низких температур пе удается целиком исключить возникновение последовательности голова-голова . Имеется очень мало данных о вероятности аналогичных нарушений при полимеризации других мономеров. По-видимому, при обш ей тенденции к увеличению регулярности строения полимера с понижением температуры полимеризации эффект преимущественного присоединения голова—хвост должен проявляться в наибольшей степени у мономеров с заместителями X, отличающимися большей полярностью или объемом. [c.234]

    Активность мономеров при раздельной и совместной полимеризации различна. Скорость полимеризации винилацетата значительно выше скорости полимеризации стирола, при совместной полимеризации этих мономеров реакционная способность стирола становится значительно выше реакционной способности винилацетата. Мале-иновый ангидрид не полимеризуется в обычных условиях, однако в смеси со стиролом, винилацетатом и другими мономерами он образует сополимеры. Реакционная способность мономеров при совместной полимеризации, как и в случае их раздельной полимеризации, зависит от их строения. [c.34]

    При сополимеризации винилхлорида с различными мономерами нарушается регулярность строения макромолекул в результате этого улучшается растворимость сополимеров по сравнению с соответствующими гомополимерами. В зависимости от условий проведения реакции сополимеризации получают сополимеры различного строения с заданными свойствами (блок-сополимеры, привитые сополимеры и т. д.). Наиболее распространенными являются сополимеры винилхлорида с винилацетатом и винилиденхлоридом. [c.99]

    Как и другие карбоцепные полимеры, поливиниловый спирт синтезируют обычно методами радикальной полимеризации. В отличие от других полимеров этого типа поливиниловый спирт не может быть получен непосредственно из исходного мономера — винилового спирта, так как последний изомеризуется в ацетальдегид. Поэтому поливиниловый спирт производят из поливинилацетата, который легко образуется при полимеризации винилацетата (в эмульсии или в растворе метилового или этилового спирта). Регулярность строения полимера зависит от условий полимеризации. Для формования волокна пригодны лишь полимеры с минимальным количеством разветвлений, особенно для получения высокопрочных волокон. [c.218]

    А. Д. Абкин [20] с этих же позиций рассмотрел явления совместной полимеризации. Скорость совместной полимеризации и состав образующегося сополимера дают возможность вычислить константы скорости реакции того или иного радикала но отношению к той или иной мономерной молекуле. На основе констант скоростей взаимодействия молекул данной природы с радикалами различного химического строения и радикалов данного химического строения с молекулами различной природы были составлены ряды реакционной снособности радикалов. Активность последних возрастает в ряду стирол, бутадиен, метилметакрилат, вннилцианид, метилакрилат, винилацетат. X. С. Багдасарьян [19] показал, что наиболее активные радикалы образуются из наименее активных мономеров. Следовательно, ряд реакционной способности мономеров антибатен ряду активности радикалов. Иначе говоря, чем легче реагирует с различными радикалами молекула, т. е. чем она активнее, тем труднее реагирует получаемый из этой молекулы путем разрыва двойной связи соответствующий радикал, т. е. тем он менее активен, и, наоборот, чем менее активна молекула (чем труднее она реагирует), тем более активным оказывается радикал, получаемый из нее путем разрыва двойной связи. [c.80]

    Здесь приводятся значения 7 с для волокон из гомополимера. На практике применяются волокна из сополимеров акрилонитрила с метилметакрилатом, винилацетатом и другими мономерами, для которых Гс тем ниже, чем больше содержание второго мономера. Поэтому тепловая обработка ПАН-волокон производится тем легче и Б более широких температурных пределах, чем больше содержание второго мономера в структуре макромолекул и чем менее регулярно их строение. [c.140]

    Мономерами служат также простые и сложные эфиры винилового спирта (см. 77 и 108), например винилацетат, дающий полимер строения [c.456]

    Наибольшее практическое применение для синтеза сополимеров получили мономеры, образующие с акрилонитрилом сополимеры нерегулярного строения. Нарушение регулярности повышает гибкость цепи сополимера, вследствие чего увеличивается эластичность получаемых волокон. Из таких мономеров, добавляемых в количестве 6—12% от массы акрилонитрила, наиболее широко используются метилакрилат, метилметакрилат и винилацетат .  [c.183]


    Если И Кз одинаковые группы, то тепловой эффект реакции равен нулю и А"акт 12 ккал. Весьма возможно, что именно по этому механизму протекает реакция передачи цепи через мономер при полимеризации [10], если только особенности строения молекул мономера не делают более вероятным ка)а)й-либо д )угой механизм, как, нанример, при полимеризации винилацетата [11]. [c.73]

    Двойная связь простых виниловых эфиров и винилацетата окисляется точно так же, как и двойные связи других мономеров —производных этилена. Однако продукты определенного строения получаются лишь при действии мягких окислителей. [c.337]

    Таким образом, при передаче цепи через макромолекулу последняя превращается в полимерный радикал со свободной валентностью в середине цепи. В результате роста такого радикала в макромолекуле возникает ответвление. Чем подвижнее отдельные атомы или группы, содержащиеся в макромолекулах, тем больше вероятность передачи цепи через макромолекулу и тем больше степень разветвленности образовавшихся полимеров. Для передачи цепи через макромолекулу требуется значительная энергия активации, поэтому скорость этих реакций возрастает с повышением температуры. Например, в случае полимеризации стирола при 130°С до достижения сравнительно невысоких степеней превращения передача цепи через макромолекулу происходит редко, и образующийся полимер сохраняет преимущественно линейное строение. При полимеризации винилацетата разветвление макромолекул наблюдается ул е при 40—50" С. По способности к передаче цепи через макромолекулы метилметакрилат и акрилонитрил занимают промежуточное полон ение между стиролом и винилацетатом. Опыт показывает, что реакция передачи цепи через макромолекулы более характерна для мономеров, образующих высокоактивные радикалы. По мере увеличения степени превращения мономера в полимер вероятность возникновения макромолекул разветвленной структуры возрастает. [c.141]

    Большое значение, как известно, имеет вопрос об изменении характера роста цепи с увеличением молекулярного веса растущего радикала. При этом полимеризация разных мономеров приводит к различной зависимости этих двух факторов. Наиболее полно этот вопрос изучен сотрудниками Физико-химического института им. Л. Я. Карпова — С. С. Медведевым, П. С. Шантаровичем, X. С. Багдасарьяном и особенно А. Н. Праведнпковым [104, 123—125]. Последним установлено, что полимеризация стирола и винилацетата при малых скоростях инициирования и низких температурах протекает с постоянной скоростью до глубины превращения 25—30%, после чего реакция обрыва замедляется, скорость полимеризации возрастает. Изменение скорости полимеризации с глубиной превращения может в большей степепи зависеть от способов инициирования и условий реакции, чем от специ-([)ики, строения мономеров. Разветвление цепей зависит не только от природы мономера, как это обычно предполагалось, по и от условий реакции. [c.234]

    Если при реакциях полимеров степень полимеризации остается неизменной и происходят только изменения строения или конфигурации структурных элементов, то говорят о полимераналогичных реакциях. В качестве примера можно привести получение поливинилового спирта. Этот полимер невозможно получить обычными методами синтеза, так как его мономер — виниловый спирт в индивидуальном состоянии не существует. Поэтому сначала проводят полимеризацию винилацетата, полученный полнвинилацетат подвергают гидролизу до поливинилового спирта  [c.720]

    При полимеризации винилацетата в разбавленных растворах константа передачи цепи для спирта равна 1,8-10- при 50° С Вычислены константы передачи цепи 33 органических соединений, не содержащих галоида при полимеризации винилацетата, инициированной перекисью бензоила при 70° С наиболее активными являются вещества, содержащие активный атом водорода, 9-фенилфлуорен, бензилмеркаптан, димедон активность ароматических углеводородов увеличивается в ряду бензол, толуол, кумол, флуорен, 9-фенилфлуорен. Альдегиды и кетоны более активны, чем одноатомные спирты. Природа мономера не влияет на последовательность изменения констант передачи цепи (в зависимости от строения регуляторов), но абсолютные величины констант сильно изменяются. [c.35]

    Регулярность строения цепей ПВХ нарушается, если при, низ-котемпературной (от —15 до —40 °С) полимеризации винилхлорида 1 вводить второй мономер, например винилацетат или транс- 1,2-дихлорэтилен . При этом индекс синдиотактичности (О635/1)593) линейно уменьшается с ростом содержания винилацетата в сополимере повыщение содержания винилацетата в сополимере от 0,13 до 7,68 мол.% приводит к снижению индекса синдиотактичности от 2,38 до 1,90 (температура сополимеризации —15 Незначительное повышение температуры стеклования (на 5—10 °С) при сополимеризации винилхлорида с транс-1,2-дихлорэтиленом, очевидно, вызвано уменьшением возможности свободного вращения молекулярных цепей . [c.195]

    Изученные монозамещеиные винильные мономеры строения СНг=СНК располагаются следующим образом в порядке увеличения значений Лг/йб винилацетат метилакрилат < метилвинилкетон < акрилонитрил < стирол бутадиен (ряд I) (см. табл. 6). Соответственно 1,1-дизамещенные соединения строения СН2=С(СНз)Н образуют ряд П изопропенилацетйт < мётил-метакрилат < метилизопропенилкетон < метилакрилонитрил < [c.39]

    При гидролизе поливинилацетата боковые полимерные ответвления отщепляются вместе с ацетильной группой. Поэтому молекулярный вес поливинилового спирта в несколько раз меньше молекулярного веса исходного поливинилацетата, но макромолекулы его имеют линейное строение. Таким способом. можно определить степень разветвленности поливинилацетата. Склон- ость макрорадикалов винилацетата к переносу цепи через полимер по указанной выше схеме оообенно заметна при полимеризации мономера в набухшем в нем полимере. По мере прохождения реакции степень полимеризации полимера непрерыв- 0 возрастает, в то время как молекулярный вес. поливинилового спирта,. полученного гидролизом его, остается прежним. [c.344]


Смотреть страницы где упоминается термин Винилацетат строения мономеров: [c.213]    [c.182]    [c.223]    [c.269]    [c.94]    [c.123]    [c.269]    [c.269]    [c.102]    [c.68]    [c.73]    [c.89]    [c.55]    [c.322]   
Поливиниловый спирт и его производные Том 2 (1960) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Винилацетат



© 2025 chem21.info Реклама на сайте