Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная полимеризация виниловых эфиров

    Исследована реакционная способность виниловых эфиров фенола, о-, м-, п-крезолов, п-трет-бутилфенола, м-в п-метоксифенолов, м-ш п-хлорфенолов, и-бром-и и-нитрофенолов, синтезированных на базе ацетилена и фенолов, в реакциях радикальной и ионной полимеризации. [c.416]

    Г. ИОННАЯ ПОЛИМЕРИЗАЦИЯ ВИНИЛОВЫХ ЭФИРОВ [c.270]

    Винилалкиловые эфиры очень медленно полимеризуются в низкомолекулярные продукты в присутствии инициаторов радикального типа, а также под влиянием тепла и света. Ионные катализаторы вызывают очень быструю полимеризацию виниловых эфиров до полимеров различного молекулярного веса в зависимости от условий процесса. Типичными ионными катализаторами являются минеральные кислоты, иод, трехфтористый бор, хлорид цинка, сульфат железа, алкилалюминий и др. Реакцию полимеризации виниловых эфиров обычно осуществляют в блоке или растворе. [c.198]


    Простые виниловые эфиры полимеризуются только по ионному механизму, но легко вступают в реакцию свободно-радикальной совместной полимеризации с другими винильными соединениями. Однако во всех случаях свободно-радикальной сополимеризации количество звеньев простого винилового эфира в макромолекулах не превышает 50% мол. Следовательно, в макромолекулах сополимеров простых виниловых эфиров не могут находиться непосредственно связанные между собой звенья простого винилового эфира. [c.519]

    Инициирование полимеризации в эмульсии с применением ионных эмульгирующих агентов (стеарата, резината или алкил-сульфонатов натрия) обычно осуществляется с помощью водорастворимых соединений (например, персульфатов металлов). Образование полимеров виниловых эфиров и низших акриловых эфиров, имеющих значение для приготовления эмульсионных лаков, инициируется с помощью перекиси водорода, а также диацилперекисей и гидроперекисей [c.450]

    Среди кислородсодержащих соединений, получаемых в промышленности основного органического и нефтехимического синтеза, сложные виниловые эфиры, наиболее важным из которых является винилацетат, занимают одно из первых мест. Широкое распространение в промышленности винилацетат нашел прежде всего в качестве мономера. Важнейшим свойством винилацетата выступает его способность к полимеризации. Полимеризация протекает по ионному механизму и катализируется кислотными агент тами. Винилацетат способен и к сополимеризации с теми мономерами, для которых характерна полимеризация, протекающая по свободно-радикальному механизму. [c.467]

    В свете этих представлений весьма интересна способность простых виниловых эфиров к катионной полимеризации. Очевидно, винильная группа в данном случае благодаря сопряжению с кислородом оказывается более реакционноспособной по отношению к положительным ионам (Н" или Н" ), чем эфирный кислород. В то же время катионная полимеризация алкилвиниловых эфиров в отличие от изобутилепа может проводиться в среде насыщенных простых эфиров. Следовательно, основность двойной связи этих мономеров выше основности кислорода в насыщенных эфирах. [c.334]

    Полимеризация. Конденсацию олефинов на кислотных центрах мы рассмотрели в гл. 8, где особенно подчеркивали ее роль в дезактивации катализаторов. В реакции такого типа протонирование исходного соединения приводит к образованию иона карбония, который, взаимодействуя с непротонированной молекулой субстрата, дает новый карбониевый ион. В работе Баррера и Оя [14] описано взаимодействие Н-морденита, вакуумированного при 360° С, с парами н-бутил-винилового эфира при 22—50° С. В этих условиях на поверхности, а отчасти и в объеме кристаллитов цеолита, образуются низкомолекулярные полимеры, молекулы которых состоят приблизительно из 10 мономерных звеньев. Скорость полимеризации возрастает, если на мордените предварительно адсорбируют небольшое количество воды (из расчета одна молекула НгО на один бренстедовский центр). Для объяснения этих явлений был предложен механизм катионной полимеризации [реакция (3)], включающий стадию образования вторичных карбониевых ионов, стабилизованных а-алкоксигруппой. Однако, судя по кинетике процесса и, в частности, по наличию прямолинейного участка на графике зависимости количества продуктов [c.130]


    Известны и другие случаи стереоспецифич. полимеризации на алкильных соединениях металлов I — III групп периодич. системы, протекающей по координационно-ионному механизму, напр, образование изотактич. полиакрилатов и полиацетальдегида, оптически активного полипропиленоксида. Наконец, К.-и. п. виниловых эфиров, в результате к-рой образуются изотактич. полимеры, протекает на катализаторах, обычных для катионной полимеризации (см. Виниловых эфиров простых полимеры). [c.547]

    Механизм инициирования через ион карбония был подтвержден на примере полимеризации простых виниловых эфиров под влиянием Bp3-0( SHs)2 Наличие в полимере меченого углерода свидетельствует в пользу инициирования по уравнению [c.112]

    Многие мономеры (акриловые и метакриловые эфиры, хлористый винил, хлористый винилиден и др.) полимеризуются только по механизму цепной радикальной полимеризации. С другой стороны, некоторые мономеры полимеризуются предпочтительно или только по ионному механизму (винилкарбазол, простые виниловые эфиры и др.). [c.34]

    Стереоспецифическая полимеризация полярных мономеров, например метакрилатов и простых виниловых эфиров, возлюжна в определенном интервале температур при определенных соотношениях мономера, катализатора и растворителя. В условиях, когда активные центры растущих частиц свободны (не координированы), с понижением температуры создаются более благоприятные условия для образования синдиотактических структур (разд. 8.3). Это справедливо для всех радикальных реакций полимеризации и для ионных полимеризационных процессов, проводящихся в сильно сольватирующих средах. Образование изотактических полимеров может иметь место в слабо сольватирующих [c.535]

    Серная, фосфорная и другие кислоты почти не применяются как катализаторы ионных процессов. Иод применяют при полимеризации простых виниловых эфиров . [c.125]

    Синтез полимеров с длинными боковыми ответвлениями может быть осуществлен как по радикальному, так и по ионному механизму. Акрилаты, метакрилаты и виниловые эфиры легко полимеризуются по радикальному механизму с образованием макромолекул атактического строения. Радикальная полимеризация а-олефипов практически не идет вследствие деградационной передачи цепи. [c.128]

    Вследствие окислдтельной природы аниона возникает, конечно , подозрение, что наблюдаемая полимеризация вызвана свободными радикалами. Однако па полимеризацию под действием перхлората серебра оказывает влияние диэлектрическая постоянная реакционной среды кроме того, этот катализатор способен на полимеризацию виниловых эфиров, которые не очень чувствительны к инициаторам свободных радикалов. Судя по этим фактам, можно предполагать ионный механизм [222]. Йод полимеризует виниловые эфиры [223], причем образование ионов происходит в результате реакции [c.249]

    Была изучена полимеризация виниловых соединений под воздействием смешанных ионных катализаторов, содержащих натрий-алкилы . При использовании изоамилнатрия и тетрахлорида титана установлено, что катализаторы с большим содержанием тет-рёхлорида титана являются активными для полимеризации виниловых эфиров, а катализаторы с меньшим содержанием — для полимеризации акрилонитрила и метилметакрилата. В пределах использованных соотношений компонентов каталитической системы полимеризация стирола не протекала. Некоторые каталитические системы были особенно эффективными при полимеризации ряда мономеров, в том числе  [c.24]

    Винилалкиловые эфиры легко гидролизуются разбавленными растворами кислот, образуя ацетальдегид и соответствующий спирт. Инициаторы радикального типа, свет и тепло вызывают медленную полимеризацию их в низкомолекулярные псУлимеры. Ионные катализаторы приводят к быстрой полимеризации виниловых эфиров. Образующиеся полимеры в зависимости от условий реакции имеют разную молекулярную массу. Минеральные кислоты вызывают образование вязких полимеров с молекулярной массой 1000—10000 Sn U, ВРз О(С2Н5)2 и галогениды других металлов приводят к получению полимеров с молекулярной массой до 1 ООО ООО. В сополимеризацию по радикальному механизму винилалкиловые эфиры вступают легко, образующиеся сополимеры имеют высокую молекулярную массу. [c.106]

    Трифенилметилхлорид, который диссоциирует в ж-крезоле на ионы С(СоН5)з+ и С1 является в этом растворителе прекрасным катализатором для полимеризации виниловых эфиров [5]. [c.294]

    Истинная природа полимеризации под действием галогенидов Фриделя — Крафтса была впервые выявлена Поляни и сотр. [12] для изобутилена. Как показали эти исследователи, каталитическое действие фтористого бора проявляется лишь в присутствии сокатализатора (следов воды или какого-либо другого полярного соединения). Комплекс фтористый бор — вода реагирует затем с мономером, передавая ему протон и образуя карбониевый ион, который вызывает полимеризацию по механизму Уитмора [13]. Хотя в двух первых статьях [9, 14] по кинетике полимеризации виниловых эфиров для стадии инициирования с хлорным оловом предполагался механизм с поляризацией связи, в настоящее время для всех известных катализаторов отдают предпочтение карбониевому цепному механизму, как это будет видно из последующего изложения. Ионная природа цепи при полимеризации виниловых эфиров была показана ускоряющим влиянием растворителей с высокой диэлектрической проницаемостью [14]. (Это испытание предложил Пеппер 115].) Наиболее убедительной демонстрацией того, что реакция протекает через катионы, является очень высокая активность трифенилметилкарбониевых ионов в инициировании полимеризации винилоктилового эфира [14]. Позже были получены доказательства сокаталитического действия диэтилового эфира и воды по отношению к фтористому бору. Все подробные кинетические данные, полученные для широкого ряда катализаторов и различных условий реакции, укладываются в простую схему катионно-цепного механизма, которая предлагается здесь как основа, дающая возможность обсуждать экспериментальные результаты. [c.323]


    В присутствии соответствующих катализаторов и сокатализаторов методом катионной полимеризации при—70°Шильдкнехт получил кристаллические и стереорегуляриые полимеры алкил-виниловых эфиров. Эти работы показали, что рост макроионов в процессе катионной полимеризации является регулируемым процессом и, в зависимости от природы ионной пары, при низкой тем- [c.138]

    КАТИОНИТЫ, см. Катионообменные смолы. КАТИ0НИАЯ ПОЛИМЕРИЗАЦИЯ, ионная полимеризация, в к-рой растущий конец полимерной цепи несет положит. заряд. К этой полимеризации способны олефины, ароматич. соединения с ненасыщ. боковой цепью, алифатич. альдегиды и тиоальдегиды, виниловые эфиры и тиоэфиры, кетены, нитрилы, диазоалканы, цианамиды, изоцианаты, напряженные циклоалканы (напр., циклопропан), гетероциклич. простые и сложные эфиры, ацетали, амиды, ам1шы, сульфиды, дисульфиды, силоксаны, иминоэфиры. [c.353]

    Обсуждение реакций карбениевых ионов с я-электронными парами будет ограничено здесь рассмотрением реакций с олефинами и бензоидными ароматическими соединениями. В обоих случаях первоначальным продуктом является другой карбениевый ион, который далее реагирует с образованием устойчивых продуктов. Среди реакций циклогексадиенил-катионов, генерируемых электрофильной атакой на бензоидиые соединения, преобладает реакция, ведущая к восстановлению ароматического секстета обычно за счет потери протона. Карбениевые ионы, образующиеся при взаимодействии карбениевых ионов с олефинами, могут претерпевать дальнейшие превращения по нескольким конкурирующим направлениям, одним из которых является атака на другую молекулу олефина, что приводит к образованию полимерных продуктов. Из простых а-олефинов при катионной полимеризации образуются продукты с низкой молекулярной массой, поскольку в таких системах процессы переноса преобладают над процессами роста цепи. Полимеры с высокой молекулярной массой образуются обычно из таких олефинов как виниловые эфиры и стиролы. Типичные величины относительной реакционной способности виниловых мономеров, определенные при изучении сополимеризации в нитробензоле, следующие [46] бутадиен 0,02, изопрен 0,12, винилацетат 0,4, стирол (1,0), изобутен 4 виниловые эфиры реагируют очень быстро. Иногда катионная полимеризация протекает стереорегу-лярно. [c.541]

    Полимеризация протекает особенно легко, если мономер реагирует с образованием стабилизированного карбениевого иона. Такими мономерами являются изобутен, простые виниловые эфиры, стирол, а-метилстирол и бутадиен, но не такие вещества, как, например, акриламид. Поскольку реакционная способность мономеров очень различна, катионную сополимеризацию трудно осуществить. [c.305]

    Однако в связи с другими реакциями изомеризации, алкилирования и т. п. представляется возможным, что столь большое соотношение между числом молекул полимера и числом молекул катализатора может указывать на легкий перенос протона к молекулам мономера, подобный переносу атома водорода в реакции свободнорадикальной полимеризации. В частности, при полимеризации простых виниловых эфиров и алкенов-1 молекулярные веса полученных продуктов низки. Осуш,ествление обрыва также возможно путем отрыва гидрид-иона либо от неактивного полимера, либо от карбониевого иона, однако это не должно обязательно уменьшать молекулярный вес, но может привести к получению разветвленных молекул. [c.432]

    Спорным до настоящего времени представляется вопрос о существовании особого типа инициирования катионной полимеризации, в котором первичными образованиями, генерирующими активные центры, являются л-комплексы мономер—катализатор. Идея о возможности подобного инициирования, выдвинутая Гант-махер и Медведевым [22, 23], основана на акцепторно-донорных свойствах кислот Льюиса и ненасыщенных мономеров, приводящих к возникновению л -комплексов инициирование, согласно этой точке зрения, осуществляется за счет ионной пары, образующейся при взаимодействии такого комплекса с повой молекулой мономера. Факт существования я-комплексов мономер—катализатор в ряде случаев доказан по характерным полосам поглощения в ультрафиолетовой области (например, для систем с участием йода, ЗпС , СС1зС00Н и мономеров ряда стирола и простых виниловых эфиров [20, 24, 25]). Тем не менее участие я-комплексов в стадии инициирования нельзя считать доказанным. [c.307]

    Особенно ценным свойством винилариловых эфиров является их большая активность в ионных реакциях полимеризации и сополимеризации с другими мономерами [3, 5, 6]. Литературные сведения о поливинил-ариловых эфирах немногочисленны. Но и из этих немногих данных очевидно их практическое значение [7]. Получаемые из винилариловых эфиров полимеры могут служить в качестве добавок к используемым в промышленности смолам для повышения адгезии к металлам, стеклу и другим материалам [8]. Полимеризация и сополимеризация виниловых эфиров хлор- и фторфенолов позволяет получать иолимеры, обладающие пониженной горючестью и фунгицидными свойствами [9]. [c.267]

    Энергия активации стадии роста ( 2), вероятно, даже ниже, чем в случае радикальной полимеризации, так как в процессе роста ион приближается к поляризуемой молекуле как полагают, 2 приблизительно равно нулю [214]. Поэтому, если 1 < Е, , энергии активации суммарной реакции будут отрицательными. Тот же довод имеет силу и для колебаний молекулярного веса, которые являются функциями отношений к [к или к /к . Отсюда Ё м.в = Е —Е -анжЕ — 4, и так как Ег О, то из этой формулы вытекает, что молекулярные веса будут тем больше, чем ниже температура полимеризации. В случае виниловых эфиров энергии активации положительны (около 10—16 ккал/моль)-, отсюда Ех должно быть несколько больше этого значения. Вообще энергии активации катионной полимеризации колеблются от г 4-16 до —8 ккал/молъ. Хотя и полагают, что некоторые системы гомогенны, во многих ионных системах катализатор не растворяется, и кинетика усложняется вследствие влияния гетерогенных факторов [253, 254]. Возможно также, что во многих системах не наступает стационарное состояние для промежуточных соединений. В некоторых системах нет явной стадии обрыва, причем полимеризация продолжается при дальнейшем добавлении мономера. На основании этих фактов можно предположить, что некоторые стадии процесса полимеризации обратимы [202, 255]. [c.257]

    Это кажется разумным, так как экспериментальные данные показывают, что при полимеризации стирола с четыреххлористым оловом комцлекс четыреххлористого олова и дибутиламина является таким же хорошим ингибитором, как и сам амин [224]. В этой системе ионы хлора также проявляют ингибитируюш ее действие. Простые эфиры и спирты задерживают полимеризацию изобутилена [212] и виниловых эфиров [256]. Как было отмечено ранее, хлористый водород является ингибитором при полимеризации стирола с четыреххпорисаым оловом [217]. Таким образом, механизм торможения, ио-видимому, совершенно изменяется ввиду сокаталитического механизма предполагают, что может встретиться не только торможение посредством образования устойчивых комплексов катализатор-ингибитор, неспособных дать под-ходяш,ие или достаточно активные катионы, но что полимеризацию могут задерживать некоторые анионы. [c.258]

    Научные исследования относятся к химии простых виниловых эфиров, ацетилена и элементоорганических соединений. На основе поливннилбутилового эфира создал (1939) обволакивающее н противовоспалительное средство — ви-нилин, или бальзам Шостаковско-го. На основе поливинилнирроли-доиа получил (1950—1955) кровезаменитель и средство для борьбы с лишаем у животных. Синтезировал и изучил (1960—1967) свойства ряда кремний-, олово- и свинец-оргаиических соединений с тройной связью. Изучал ионную теломеризацию и полимеризацию. [c.579]

    В результате невысокой склонности винилсульфидов к ионной полимеризации они дают при реакции с тиоацеталями в присутствии ВРз-(СаН5)20 вместо смеси низкомолекулярных полимеров (как для простых виниловых эфиров) соответствующие тетрамер-каптоалкилбутаны с выходом до 70%  [c.345]

    Книга представляет собой монографию по синтезу и свойствам сте-реоспецифических полимеров, в которой собран и систематизирован обширный материал по линейной и стереоспецифичеспой полимеризации и сополимеризации этиленовых и ацетиленовых углеводородов, виниловых соединений, в том числе виниловых эфиров, акрилатов и окисей оле-финов. Приведен краткий обзор теории радикальной и ионной полимеризации и подробно рассмотрены вопросы каталитической полимеризации и механизма таких реакций, в том числе на гетерогенных катализаторах Циглера—Натта. Особое внимание уделено способам получения и свойствам катализаторов для стереоспецифической полимеризации. Рассмотрены также вопросы очистки полимеров, их физические и механические свойства. В книге содержится обширная библиография. [c.4]

    Богданова, Шостаковский и Красильникова [427] исследовали ионную полимеризацию и сополимеризацию простых виниловых эфиров циклогексанола, р-декалола и р-нафтола. Они нашли, что указанные выше эфиры по своей реакционной способности могут быть расположены в следующей последовательности винилбутиловый > винил-Р-декалиловый > винилциклогексило-вый > винилфениловый > винил-Р-нафтиловый. 11олучены сополимеры этих эфиров с метиловыми эфирами акриловой и метакриловой кислот. , > [c.449]


Смотреть страницы где упоминается термин Ионная полимеризация виниловых эфиров: [c.169]    [c.223]    [c.102]    [c.134]    [c.249]    [c.637]    [c.146]    [c.203]    [c.249]    [c.301]    [c.316]    [c.195]    [c.241]    [c.579]   
Смотреть главы в:

Линейные и стереорегулярные полимеры -> Ионная полимеризация виниловых эфиров

Линейные и стереорегулярные полимеры -> Ионная полимеризация виниловых эфиров




ПОИСК





Смотрите так же термины и статьи:

Виниловые эфиры

Ионная полимеризация

Ионная полимеризация Полимеризация



© 2024 chem21.info Реклама на сайте