Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метионин, значение

    Тот факт, что а-аминокислоты суть составляющие белков, придает им особое значение. Восемь аминокислот называют незаменимыми , потому что млекопитающие не могут их синтезировать и должны получать вместе с пищей. Это изолейцин, лейцин, лизин, метионин, валин, треонин, фенилаланин и триптофан. Они все обладают ь-конфигурацией, и располагать способом получения таких аминокислот весьма важно. Десять лет назад с этой целью использовали в основном биохимические методы, основанные на разделении рацемических смесей. [c.93]


    Наибольшее значение для биохимического получения аминокислот приобрел метод стереоспецифичного гидролиза эфиров аминокислот и их N-ацильных производных. Под действием фермента ацилазы Ы-ацетил-1-метионин гидролизуется, [c.112]

    Взаимодействие метионина с бромцианом и последующее расщепление полипептидной цепи протекает при сильно кислых значениях pH по схеме, представленной ниже  [c.141]

    Г.К. называют вырожденным, поскольку 61 кодон кодирует всего 20 аминокислот. Поэтому почти каждой аминокислоте соответствует более чем один кодон. Вырожден-ность Г. к. неравномерна для аргинина, серина и лейцина она шестикратна (т.е. для каждой из этих аминокислот имеется по шесть кодонов), тогда как для мн. др. аминокислот (тирозина, гистидина, фенилаланина и др.) лишь двукратна. Две аминокислоты (метионин н триптофан) представлены единств, кодонами. Кодоны-синонимы почти всегда отличаются друг от друга по последнему из трех нуклеотидов, тогда как первые два совпадают. Т. обр., код аминокислоты определяется в осн. первыми двумя буквами . Вырожденность Г. к. имеет важное значение для повышения устойчивости генетич. информации. [c.519]

    Анализ значений энтальпии и энтропии комплексообразования (см. табл. 4.8) показывает, что комплексообразование 18-краун-б с АК является селективным процессом. Отметим, что комплексы 18-краун-б с такими аминокислотами как Ь-аспарагин, Ь-глутамин, Ь-серин, Ь-треонин энтальпийно стабилизированы, а комплексообразование ОЬ-метионина, Ь-гистидина, Ь-изолейцина с макроциклом энтальпийно и энтропийно благоприятно. [c.209]

    Существует множество примеров зависимости катализа и связывания от конформационных изменений. Участок связывания химотрипсина решающим образом зависит от наличия солевого мостика между аспарагиновой кислотой-194 и концевой аминогруппой изолейцина-16 (см. рис. 24.1.14). В неактивном предшественнике химотрипсина, химотрипсиногене, например, каталитические группы расположены так же, как и в нативном ферменте, но гидрофобный карман отсутствует [49]. Последний формируется в результате индуцированных образованием солевого мостика изменений конформации аспарагиновой кислоты-194 и соседних остатков аминокислот — глицина-193 и метионина-192. Согласно кинетическим экспериментам, проведенным на химотрипсине, нечто подобное происходит при протонировании свободной формы (ЫНг) изолейцина-16. Форма фермента, характерная для высоких значений pH, неактивна, так как она не способна связывать субстрат. При быстром понижении pH раствора неактивной формы фермента с 12 до 7 связывание наблюдается, но только по прошествии определенного отрезка времени (менее секунды), во время которого фермент принимает активную конформацию [111]. В этом случае конформационное изменение должно предшествовать связыванию и явно слишком медленно для того, чтобы являться частью нормального механизма. [c.516]


    Одним из наиболее простых и надежных методов предотвращения окислительной деструкции компонентов инфузионных растворов является проведение процесса растворения в токе инертного газа при периодическом или непрерывном барботировании им раствора. В этих условиях наиболее устойчивые растворы удается получить при значениях pH, лежащих в интервале 4,9 - 5,6. Так, барботирование аминокислотного раствора стерильным азотом дает возможность сократить время стерилизации без заметного разрущения триптофана и метионина. [c.348]

    Сера — элемент, значение которого в питании определяется в первую очередь тем, что он входит в состав белков в виде серосодержащих аминокислот (метионина и цистина), а также в состав некоторых гормонов и витаминов. Содержание серы обычно пропорционально содержанию белков в пищевых продуктах, поэтому ее больше в животных продуктах, чем в растительных. Потребность человека в сере (около 1 г в день) удовлетворяется обычным суточным рационом. [c.69]

    В сельском хозяйстве аминокислоты применяются преимущественно в качестве кормовых добавок. Многие растительные белки содержат лизин в очень малых количествах, поэтому добавление лизина в корма сельскохозяйственных животных с целью их сбалансирования по белковому питанию имеет первостепенное значение. Кроме того, в сельском хозяйстве аминокислоты применяются для защиты растений от различных болезней (метионин, глутаминовая кислота, валин). Производные таких аминокислот, как аланин и глицин, обладают гербицидным действием и используются для защиты растений от сорняков. [c.27]

    Фосфолипиды стимулируют использование жиров в организме. При недостатке фосфатидов замедляются процессы биохимического превращения жиров в печени, и содержание их в этом органе может достигать 50%, вместо 5% в норме. При гидролитическом распаде фосфолипидов образуются глицерин, жирные кислоты, фосфорная кислота и азотистые основания. Первые два продукта могут окисляться до СО2 и воды или могут принять участие в синтезе жиров. Один из представителей азотистых оснований холин является продуктом распада лецитинов и принимает участие в синтезе ряда важных для организма соединений (метионин, креатин и др.). Ацилирование холина уксусной кислотой в организме приводит к образованию ацетилхолина, который имеет большое значение в передаче нервных возбуждений  [c.65]

    Белки кукурузы. Высокий процент метионина в глютине кукурузы не является общепризнанным фактом. Между тем это может иметь существенное значение при оценке кукурузы как пищевого продукта. [c.257]

    Непосредственные данные о метилировании, происходящем по месту углеродного атома (С-метилирование), получены лишь в немногих случаях. Экстракты из дрожжей включают метильную группу метионина (по-видимому, в виде 5-аденозилметионина) в боковую цепь эргостерола (по месту 28-го углеродного атома). Особое значение имеет включение метильной группы в тимин. [c.418]

    Кислые и нейтральные аминокислоты, смола иЯ-ЗО, литий-цитратные буферы. При постоянных значениях pH буфера (2,80), температуры колонки (38,8 °С) и скорости течения буфера (70 мл/ч) изменение концентрации цитрата с 0,033 до 0,166 М оказывает такое же общее влияние, что и увеличение pH буфера. При концентрации цитрата 0,033 М оксипролин и аспарагиновая кислота не разделяются, но по мере увеличения концентрации цитрата аспарагиновая кислота элюируется, опережая оксипролин. При концентрации цитрата 0,166 М цистатионин и метионин не разделяются. [c.45]

    Синтезированы и применяются содержащие серу аминокислоты, например СНз—3 5—СНа—СНг—СН (ЫНг)—СООН (метионин). Но особенно часто и широко в органической химии и биохимии применяются разнообразные вещества с радиоактивным изотопом углерода С. Исходным веществом для синтеза в этих случаях часто является СОг (из Ва СОз). Очень многие синтезы проводят с использованием реакции Гриньяра получение кислот, сложных эфиров, кетонов, алкоголей и др. Таким образом, приобретают большое значение такие синтезы, которые, казалось бы, никогда не было смысла применять в практике. Так, например, описан путь получения толуола по схеме  [c.399]

    Значение фосфатидов. Как уже указывалось, лецитин, подобно другим фосфатидам и нейтральным жирам, может легко синтезироваться в организме человека и животных. Однако, как было установлено в опытах на животных, если недостаточное поступление извне лецитина длится долго и пища при этом бедна белками, в состав которых входит аминокислота метионин, а также жирами, содержащими незаменимые, не образую- [c.297]

    В тесной связи с вопросом о биологической ценности белка находится представление о так называемых жизненно необходимых, или незаменимых, аминокислотах. Значение определенных аминокислот для нормального роста было выяснено в опытах на людях и некоторых животных. В этих опытах потребность в белках удовлетворялась смесью чистых аминокислот, из которой исключались те или иные аминокислоты, и, в зависимости от того, тормозился при этом рост или совершался нормально, делали вывод о значении исследуемых аминокислот для роста. Так, было установлено, что жизненно необходимыми (незаменимыми) аминокислотами для роста крыс являются следующие 10 аминокислот валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, гистидин, аргинин (рис. 40 и 41). Незаменимость указанных аминокислот для роста, видимо, связана с тем, что организм неспособен их синтезировать. Они должны быть введены извне вместе с пищей. Скорость синтеза аргинина, который может быть синтезирован в организме, невелика. Поэтому при отсутствии аргинина в пище рост не прекращается, но идет медленнее, чем при наличии аргинина. Отсутствие в пище остальных аминокислот (например, гликокола, аспарагиновой кислоты) не влияет на рост, так как организм способен их синтезировать. [c.308]


    Акролеин кипит при 52,5°. Раньше он привлекал к себе внимание как боевое отравляющее вещество. Акролеин легко полимеризуется, но про-дую ы полимеризации пока еще не имеют никакого значения. Недавно его использовали в качестве бифункционального реагента в производстве высокополимеров. Вступая в конденсацию с пентаэритритом, акролеин образует прозрачный, как стекло, полимер, причем с гидроксильными группами пентаэритрита реагируют и карбонильная группа и двойная связь [32]. Среди других применений акролеина следует указать на производство различных инсектицидов и химико-фармацевтических препаратов, а также на синтез метионина СНзЗСН2СН2СН(ЫН2)СООН — ростового вещества для домашней птицы. [c.310]

    Холин СН20НСН2М(СНз)з0Н. Холин, представляющий собой полностью метилированный коламин, имеет большое значение в биологии. Он является важнейшей составной частью лецитииов (стр. 271) и очень распространен как в органах человека н животных, так и в растениях. В биологических процессах холнн является метилирующим агентом сам он получает метильные группы, например от метионина (стр. 353, 356). [c.308]

    В настоящее время суммарное производство а-аминокислот составляет в мире около полумиллиона тонн в год. Оно стало крупнотоннажным благодаря их широкому применению как в медицине, так и в сельском хозяйстве (ростстимулирующие кормовые добавки) и в пищевой промышленности (вкусовые и консервирующие вещества). О практическом значении индивидуальных аминокислот говорят масштабы их химического и биохимического синтеза триптофан производят в количестве от 0,2 до 0,3 тыс. т, глицин - 7-10 тыс. т, лизин - около 50 тыс. т, метионин - 150-200 тыс. т и глутаминовую кислоту - более 200 тыс. т в год. [c.36]

    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]

    Метионин включается в белки и как таковой, и в виде N-формилме-тионина в качестве N-концевого остатка бактериальных белков (рис. 14-9, стадии а и б). Как в клетках животных, так и в клетках растений Метионин может лодвергаться переаминированию в соответствую-Щую-кетокислоту (стадия в), но в количественном отношении эта реакция едва ли имеет важное значение. Главный путь превращения метионина связан с его превращением в S-аденозилметионин (SAM, рис. 14-9, стадия г). Эта реакция уже обсуждалась (гл. 11, разд. Б,2) была рассмотрена (гл. 7, разд. В, 2) и функция SAM в процессе трансметилирования (стадия д). Продукт трансмет1у1ирования S-аденозилгомоцис--теин превращается в гомоцистеин путем необычной гидролитической реакции отщепления аденозина (стадия е) >. Гомоцистеин может быть снова превращен в метионин, как показано штриховой линией на рис. 14-9, а также в уравнении (8-85). Другой важный путь метаболизма гомоцистеина связан с превращением в цистеин (рис. 14-9, стадии ж и з). Эта последовательность реакций обсуждается в разд. Ж- ДрУ гим продуктом на этом пути является а-кетобутират, который доступен окислительному декарбоксилированию с образованием пропионил-СоЛ и его дальнейшим метаболизмом или может превращаться в изолейцин (рис. 14-10). [c.111]

    Синтез солей метионинметилсульфония в растениях происходит путем метилирования метионина S-аденозилметио-нином. Биол. значение этой р-ции состоит, по-видимому, в том, что очень неустойчивый S-аденозилметионин (метилирующий агент в биохим. р-циях) превращается в более устойчивый М., выполняющий те же ф-ции. [c.71]

    Синтез Штрекера имеет большое значение для получения в промышленности глутаминовой кислоты, метионина и лизина. Исходные альдегиды получают из продуктов нефтехимического производства, и синтезы обычно ведут через гидантоины. По методу Дюпона исходят из ацетилена  [c.43]

    Превращение полученного химическим синтезом гастрина I в гастрин II можно осуществить обработкой efo комплексом пиридин — SO3 прн pH 10. Но прн такой обработке могут протекать различные процессы в аминокислотных остатках в области 14—17 (важной для проявления биологической активности), ведущие к инактивации пептида, например замешение в триптофановом кольце, окисление метионина в его S-окснд, дезамидирование и т. д. Для уменьшения этих изменений Met может быть заменен без уменьшения биологической активности на Leu >5. Это наблюдение имеет большое практическое значение, потому что [Ьеи ]гастрнн I человека, не имея остатка метионина, более устойчив к окислению и обладает повышенной стабильностью при хранении. Замены в участке 1—13 не оказывают какого-либо влияния на биологическую активность. Гастрины нз других организмов, отличающиеся от человеческого этим участком, также проявляют биологическую активность. [c.276]

    Все серосодержащие соединения нефтей, кроме низкомолекулярных меркаптанов, при низких температурах химически нейтральны и близки по свойствам аренам. Промышленного применения они пока не нашли из-за низкой эффективности методов их выделения из нефтей. В ограниченных количествах выделяют из средних (керосиновых) фракций некоторых нефтей сульфиды для последующего окисления в сульфоны и сульфокислоты. Сернистые соединения нефтей в настоящее время не извлекают, а уничтожают гидрогенизационными процессами. Образующийся при этом сероводород перерабатывают в элементную серу или серную кислоту. В то же время в последние годы во многих странах мира разрабатываются и интенсивно вводятся многотоннажные промышленг ные процессы по синтезу сернистых соединений, аналогичных нефтяным, имеющих большую народнохозяйственную ценность. Среди них наибольшее промышленное значение имеют меркаптаны. Метилмеркаптан применяют в производстве метионина - белковой добавке в корм скоту и птице. Этилмеркаптан - одорант топливных газов. Тиолы С, - С4 - сырье для синтеза агрохимических веществ, применяются для активации (осернения) некоторых ка- [c.82]

    Состояние белкового обмена целостного организма зависит не только от количества принимаемого с пищей белка, но и от качественного состава его. В опытах на животных было показано, что получение одинакового количества разных пищевьгх белков сопровождается в ряде случаев развитием отрицательного азотистого баланса. Так, скармливание равного количества казеина и желатина крысам приводило к положительному азотистому балансу в первом случае и к отрицательному—во втором . Имел значение различный аминокислотный состав белков, что послужило основанием для предположения о существовании в природе якобы неполноценных белков. Оказалось, что из 20 аминокислот в желатине почти отсутствуют (или содержатся в малых количествах) валин, тирозин, метионин и цистеин кроме того, желатин характеризуется другим, отличным от казеина процентным содержанием отдельных аминокислот. Этим можно объяснить тот факт, что замена в питании крыс казеина на желатин приводит к развитию отрицательного азотистого баланса. Приведенные данные свидетельствуют о том, что различные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются достаточные количества разных белков пищи. По-видимому, справедливо положение, что, чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Следует, однако, отметить, что степень усвоения пищевого белка зависит также от эффективности его распада под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (например, белки шерсти, волос, перьев и др.), несмотря на их близкий аминокислотный состав к белкам тела человека, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных. [c.413]

    Определение метионина (по Салливану-Мак-Карти). Метионин НзС—S—СНа—СНа—СН—NHa OOH (а-амино-7-метилтиол-н-масляная кислота) является незаменимой обязательной аминокислотой, определяющей полноценность белков и играющей важную роль в метаболизме. Он является источником метиль-ных групп при синтезе пектиновых веществ, а также имеет большое значение при синтезе холина, который относится к группе витаминов В. В сахарном производстве холин играет отрицательную роль как антикристаллизатор сахара (вредный азот). При переносе сульфгидриль-иых групп метионин является источником образования цистеина. [c.20]

    Считают (без достаточного основания), что для обмена веществ в коже имеют наибольщее значение метионин, цистеин и глютаминовая кислота первые два — как носители серы, последняя играет роль фермеггта, способствующего образованию аминосоединепий в коже и мышцах. [c.79]

    Альдольное расщепление может осуществляться с а-амино-кислотами, у которых в р-положении содержится гидроксильная группа. Например, серии расщепляется с образованием глицина и формальдегида (последний не выделяется в свободном виде, а сразу связывается с другим коферментом — тетрагидрофолие-вой кислотой). Эта реакция имеет большое значение как источник одноуглеродного фрагмента (в виде гидроксиметиленовой группы), включающегося далее в синтез многих соединений, в том числе метионина, пуриновых нуклеотидов (см. 13.1). [c.342]

    Ежегодно в мире производится более 200 тыс. тонн аминокислот, которые используются в основном как пищевые добавки и компоненты кормов для скота. Традиционным промышленным методом их получения является ферментация, однако все большее значение приобретают химические и особенно ферментативные методы синтеза различных аминокислот. Наибольший удельный вес в промышленном получении аминокислот имеет лизин и глутаминовая кислота, в больших количествах производят также глицин и метионин. Аминокислоты, особенно незаменимые, т. е. не синтезирующиеся в организме, представляют большой интерес в первую очередь для медицины и пищевой промышленности. Фенилаланин является предщественником ряда гормонов, осуществляющих многие регуляторные реакции в организме, метионин — основной донор метильных группировок при синтезе адреналина, креатина, а также источник серы при образовании тиамина, валин участвует в синтезе пантотеновой кислрты, треонин — предшественник витамина B 2 и т. д. Следовательно, дефицит аминокислот, способствующий нарушению многих обменных процессов, должен восполняться за счет введения соответствующих экзогенных аминокислот.- [c.26]

    Эффективным представляется использование аминокислот как пищевых добавок, имеющее двоякое значение в качестве лечебных компонентов, а также для улучшения питательной ценности пищевьгх продуктов и придания им оптимальных вкусовых свойств. Так, глутаминовая кислота, помимо фармакологического эффекта, улучшает вкус мясных продуктов, является весьма важным ингредиентом при консервировании и замораживании. Многие другие аминокислоты также улучшают вкус тех или иных пищевых продуктов. Термическая обработка пищи в присутствии таких аминокислот, как валин, метионин или глицин, приводит к получению своеобразного аромата мясных или хлебобулочных изделий. о-Триптофан во много раз слаще сахарозы и может использоваться для диабетического питания. В пищевой промышленности такие аминокислоты, как глицин, лизин, цистеин, используются в качестве антиоксидантов, стабилизирующих ряд витаминов, например аскорбиновую кислоту, и замедляющих пероксидное окисление липидов. Кроме того, будучи сладким на вкус, глицин применяется в пищевой промышленности при производстве приправ и безалкогольных напитков. [c.27]

    Вообще говоря, в реакциях наследственной тактической со оли-меризации могут участвовать мономерные единицы двадцати видов, кодовая запись которых осуществляется путем составления сочетаний по три (из четырех возможных) значения упомянутых выше четырехзначных переменных таким образом, чтобы вырождение 5ыло возможно. Генетический код представлен ниже обозначения фенилаланин , лейцин и т. д относятся к соответствующим мономерным единицам, участвующим в сополимеризации, или, говоря более конкретно, представляют собой названия различных аминокислот (структура небольшого фрагмента полипептидной цепочки была показана ранее в разделе 11.14). В схеме против сочетания AUG записано метионин и в скобках инициатор . Это означает, что если даже тРНК и несет какую-либо информацию, последняя остается бесполезной до тех нор, пока в цени не встретится последовательность типа AUG, и лишь после этого может начаться считывание информации. Другими словами, последовательности AUG являются тем кодом, который инициирует полимеризацию метионина  [c.142]

    В процессах межуточного обмена большое значение имеет метилирование. Наряду с применяемым в медицине и сельском хозяйстве метионином, являющимся акцептором и донатором метильных групп, в медицинской практике в нашей стране и за рубежом используется природное производное метионина - 51-мвтилметионин, или витамин о (УШ) /7,12,45/. [c.125]

    В состав белков человеческого организма входят все аминокислоты, перечисленные в табл. 34, однако отнюдь не все они должны содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот они называются незаменимыми, и человек их долн ен получать с пищей. Такими незаменимыми аминокислотами являются гистидин, лизин, триптофан, фенилаланин, лейцин, изолейцин, треонин, метионин и валин. Человеческий организм, по-видимому, способен вырабатывать все остальные аминокислоты, которые называются необязательными аминокислотами. Некоторые более простые организмы, чем человек, значительно эффективнее вырабатывают все перечисленные аминокислоты из неорганических исходных веществ. Такой способностью обладает, нанример, красная хлебная плесень (Neurospora). [c.485]

    После того как Ц, Роуз, Г. Дж. Олмкуист, Р. Ц. Джексон, Г. Г. Митчель и др. доказали незаменимость для питания животного аминокислот — метионина, гистидина, лизина, триптофана, фенилаланина, треонина, лейцина, изолейцина и валина и особую важность цистина, аргинина, тирозина и гликоколя, стало возможно оценивать питательное значение белковых пищевых веществ на основании их аминокислотного состава. Сравнительно точное знание аминокислотного состава белков позволяет давать приблизительную оценку их питательности и, что важнее, дает возможность подбирать разные белки таким образом, чтобы они взаимно дополняли друг друга. Такой метод подбора пищевых рационов сокращает много времени и средств, которые тратились раньше при применявшемся до сих пор способе проб и ошибок в опытах на животных. [c.7]

    Таким образом, для чисто химических или физико-химических исследований основным требованием является точность для широкого обзора в области пищевых белков самое первое, что нужно, это — получить возможно больше материала по присутствию и содержанию незаменимых аминокпслот. В нашей практике часто встречалось, что пищевой белок является хорошим источником больщинства незаменимых аминокислот, которые легко определить (именно цистин, метионин, аргинин, гистидин, лизин, тирозин и триптофан), и все же неполноценен в отношении других аминокислот, для выявления которых нет простых и точных способов определения. Если в таких случаях руководствоваться только анализами первой группы аЛтинокислот, то можно было бы впасть в серьезную ошибку при биологической оценке данного белка. Поэтому только полный анализ аминокислот, имеющих значение для питания, может дать правильную и полноценную картину исследуемых продуктов, даже если определение отдельных аминокислот будет произведено не абсолютными, а скорее сравнительными методами. [c.9]

    В комплексе мероприятий, направленных на повышение продуктивности животноводства, важное значение имеет обеспечение полноценного минерального питания. В качестве основных, добавок к кормовым рационам используют минеральные вещества (известняк, поваренная соль, днкальцийфосфат, три-кальцийфосфат, монокальцийфосфат, сернокислый магний и др.), микроэлементы (кобальт, железо, марганец, медь, цинк), карбамид, аминокислоты, главным образом метионин и лизин,, антибиотики, витамины. Их вводят в состав комбикормов в количестве 1—2% (для птиц-несушек — 7—8%). [c.285]


Смотреть страницы где упоминается термин Метионин, значение: [c.71]    [c.254]    [c.288]    [c.46]    [c.572]    [c.678]    [c.157]    [c.81]    [c.41]    [c.38]    [c.168]    [c.950]   
Техника лабораторной работы в органической химии Издание 3 (1973) -- [ c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Метионин



© 2024 chem21.info Реклама на сайте