Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавиковая кислота реагент

    Цирконий почти не подвержен действию кислот и растворяется легко только в царской водке и в плавиковой кислоте. Большой интерес к металлическому цирконию, проявляемый за последнее время, обусловил проведение различных исследований коррозионной устойчивости циркония в различных средах. Эти исследования подтверждают, что цирконий медленно растворяется в серной и концентрированной соляной кислоте, но выдерживает 5%-ную соляную кислоту (холодную и горячую), растворы органических кислот, растворы некоторых оолей и раствор йода в йодистом калии [316]. Применение циркония как конструкционного материала в ядерной технике заставило особенно подробно изучить его коррозионную устойчивость не только в кислотах и других водных растворах, но и в воде, водяном паре, некоторых газах и в ряде органических реагентов. По данным, приводимым (в монографии [457], цирконий обладает отличной стойкостью (скорость коррозии меньше 0,0127 мм в год) почти во всех исследованных средах, за исключением газообразного хлора, с которым он легко взаимодействует, и хлорпроизводных уксусной кислоты. Исследована также коррозия циркония в расплавах различных металлов, но определенных данных пока пе получено [457]. [c.174]


    Применяя большой избыток плавиковой кислоты, можно достигнуть 99%-ного разложения поллуцита. Но существенный недостаток метода — большое загрязнение получающихся растворов примесями. Сложна к тому же организация производства ввиду агрессивности реагентов и выделяющихся продуктов реакции .  [c.120]

    Лучше всего металлы подгруппы ванадия растворяются в смесях кислот, одна из которых является окислителем, а другая — источником лигандов. Универсальным реагентом, растворяющим все три металла, является смесь азотной и плавиковой кислот  [c.427]

    Согласно [33, 34] и др., тантал не корродирует практически во всех реагентах, за исключением горячей концентрированной серной кислоты, горячего раствора калия и плавиковой кислоты . [c.48]

    Транспортируют и хранят плавиковую кислоту в эбонитовой или пластмассовой таре при строгом соблюдении норм охраны труда работающих с этим реагентом. [c.33]

    Щавелевая кислота осаждает кристаллический нормальный оксалат тория [537] из слабокислых растворов. При действии оксалата аммония также образуется оксалат тория, но осадок растворяется в избытке реагента. При действии плавиковой кислоты или фторидов щелочных металлов на торий осаждается фторид тория. Сульфатами щелочных металлов торий осаждается в виде двойных сульфатов, перекисью водорода — в виде пероксида, растворимыми иодатами — в виде иодатов, ферроцианидами — в виде ферроцианида. Торий осаждается в виде ортофосфата, пирофосфата или гипофосфата при действии соответствующих солей щелочных металлов. [c.24]

    Выделение суммы рзэ не вызывает затруднений и основывается обычно на использовании в промышленных условиях различных методов обогащения природного материала. В результате кислотной переработки концентратов, последующего переосаждения (аммиаком, щелочью, плавиковой кислотой, оксалатом и другими реагентами) и прокаливания осадка получается смесь окислов рзэ. Переосаждение в виде оксалатов дает возможность практически полностью освободиться от основных примесей (кальций, железо и др.), сопутствующих рзэ. [c.17]

    Каменное литье характеризуется высокой химической стойкостью по отношению к любым реагентам, кроме плавиковой кислоты. Оно имеет высокую механическую прочность (а при сжатии 200 400 МПа), большое сопротивление истиранию. Применять их можно при температурах не выше 150 °С. [c.228]

    Существует два товарных сорта фтористоводородной кислоты — водная и безводная. Водная кислота представляет собой раствор фтористого водорода в воде, а безводной кислотой принято называть кислоту, содержащую, как правило, не более 5% воды. Безводный продукт на профессиональном языке называется НР или безводным фтористым водородом (АНР) или ошибочно—безводной плавиковой кислотой. Оба эти продукта отличаются друг от друга по химическим свойствам, и их следует рассматривать как различные химические реагенты. Обе [c.28]


    Фтористоводородную (плавиковую) кислоту применяют как растворитель, для травления стекла, а также реагент для получения фторидов. [c.424]

    Микрослой, обусловливающий эти явления, прилипает к поверхности очень прочно. Если пленка не достаточно отвердела, ее еще можно удалить кипящим декагидронафталином [1423], однако полностью отвержденный слой можно удалить только сильными химическими реагентами, например водным раствором плавиковой кислоты или спиртовым раствором едкого кали. [c.285]

    Практически удобнее контролировать кислотность и рН не всей водной фазы, а только 4%-ного раствора оксалата аммония (нижняя ось абсцисс), поскольку объемы растворов бриллиантового зеленого и плавиковой кислоты остаются постоянными во всех опытах. При низких кислотностях сильно экстрагируется сам реагент и маскирует окраску танталового комплекса. С увеличением кислотности оптиче-екая плотность вначале резко уменьшается, затем, начиная с рН = = 0 и до рН = 0,25 (кислотность 2,2—3,5-н.), оптическая плотность меняется незначительно. Оптималь- [c.181]

    Смесь НТФ и плавиковой кислоты значительно снижает поверхностное натяжение на границе углеводород — кислотный раствор, однако для промысловых условий этого недостаточно. Дальнейшее снижение поверхностного натяжения достигается добавлением к ингибирующему раствору катионоактивных или неионогенных ПАВ. Наиболее эффективен реагент ОП-10 (новая маркировка Нижнекамского химического комбината — АФ9-12). [c.479]

    Кислотные обработки получили наибольшее распространение. В качестве реагентов используют соляную и плавиковую кислоты, а также уксусную, сульфаминовую и серную кислоты, смесь органических (оксидат) и неорганических (глинокнслота) кислот. [c.186]

    Приготовление фторированного у-оксида алюминия [а, с. 167840 (СССР) БИ, 1965, № 3]. Приготовление фторированного оксида алю ш-ния производится путем введения фтора в суспензию гидроксида алюминия. Отмытый и отжатый осадок гидроксида алюминия взмучивают и обрабатывают фтороводородом (плавиковой кислотой), затем вторично отжимают, промывают и прока швают. Вследствие частичного уноса фтора при прокаливании относительное количество его должно превышать рассчитанное на ==25% Другим возможным способо.м внесения фтора в носитель является внесение плавиковой кислоты при осаждении гидроксида алюминия. Рассчитанное количество кислоты добавляют к одному или к обоим реагентам или подают в реактор во время осаждения гидроксида, При этом варианте исключаются операции взмучивания отмытого и отжатого осадка Ърисутствие фюра при осаждении гидроксида позволяет снизить его потери при термической обработке гидроксида алюминия, конечный продукт - оксид алюминия - получается более пористым, [c.58]

    Оба металла, в особенности тантал, устойчивы во многих агрес сивных средах. На инх не действуют соляная, серная, азотная,, клорная кислоты и царская водка, так как на поверхности этих металлов образуется тонкая, но очень прочная и химически стойкая оксидная пленка. У тантала, например, эта пленка представляет собой оксид тантала (V) ТагОа. Поэтому на тантал действуют только такие реагенты, которые способны взаимодействовать с этим оксидом или проникать сквозь него. К подобным реагентам относятся фтор, фтороводород и плавиковая кислота, расплавы н1елочей. [c.653]

    Плавиковая кислота—один из основных компонентов глинокислоты может быть получен из другого химического реагента непосредственно в процессе приготовления рабочего раствора. Для этого пспользуют бифторид-фторид аммония (NHiF HF + NHsF), [c.21]

    При выборе способа обескремнивания воды наряду с ее обессоливанием следует иметь в виду, что применение фторидного метода в настоящее время в большинстве случаев нерентабельно вследствие высокой стоимости фторидных реагенто (фтористого натрия и плавиковой кислоты). Магнезиальный метод, осуществляемый в первой фазе обработки воды при ее-осветлении, является значительно более экономичиым. [c.63]

    Однако метод невыгоден, так как сильноосновные аниониты являются дорогостоящим материалом и на их регенерацию расходуется много едкого натра (до 20 кг NaOH на 1 кг удаляемой кремнекислоты). Более деш ые слабоосновные аниониты практически не поглощают кремнекислоту./ Фторид ный метод обескремнивания воды при помощи добавок специальных реагентов дает возможность использовать слабоосновные аниониты. Метод состоит в том, что дозируемые в обрабатываемую воду плавиковая кислота или фтористый натрий переводят кремнекислоту в сильную кремнефтористоводородную, которая достаточно полно поглощается слабоосновными анионитами  [c.490]

    Если константа равновесия Кр, i содержит только парциальные давления газообразных реагентов, то в выражение Кр, 2 входят также и значения активностей жидких фторида и силиката натрия в системе NaF—Na2SiOs. Обе константы включают характеристику равновесного парциального давления водяного пара в третьей степени. Это предопределяет существенное воздействие избытка водяного пара на смещение реакции пирогидролиза в сторону образования HF. Необходимо отметить, что вопрос об избытке водяного пара неразрывно связан с качеством продукта, содержащего HF. Чем больше избыток, тем больше затрат на получение концентрированной плавиковой кислоты и особенно жидкого фторида водорода. Понизить избыток водяного "пара в реакциях пирогидролиза фторидов становится возможным при повышении температуры. Так, для достижения практически полного пнрогидро-лиза (степень превращения фторидов 97—98%) при 1200 К требуется 15-кратный избыток, а при 1800 К — 4-кратный избыток с получением в первом случае равновесной смеси, содержащей —12,5% HF, а во втором случае — 30%. [c.47]


    Исследования последних ле. позволили применить к мелкокристаллическим берилловым и сподумен-берилловым рудам флотацию. Это намного увеличило добычу берилла как за счет большего извлечения, так и за счет переработки ранее неиспользовавшихся мелкокристаллических руд и отвалов ручной рудоотборки. При обогащении сподумен-берилловых руд [60, 62] вначале производят флотацию сподумена. Ее хвосты, представляющие собой черновой берилловый концентрат, флотируют затем по кислотной или щелочной схеме. Кислотная схема предусматривает использование плавиковой кислоты для депрессиро-вания пустой породы и активации берилла и катионного реагента в качестве собирателя. По щелочной схеме депрессор пустой породы — [c.191]

    Такое строение и такой характер связей обусловливают высокую устойчивость и химическую инертность циркона и гафнона. Диссоциация циркона на 2гОз и ЗЮа начинается при 1540°, но заметная летучесть ЗЮз наблюдается при 1900° (Н13104 плавится с разложением при 1750°). При обычной температуре на циркон не действуют никакие реагенты и только метаморфизированные цирконы растворяются в плавиковой кислоте и частично в серной. [c.285]

    Кислотные обработки применяются в нагнетательных и добывающих скважинах в процессе их освоения, для увеличения производительности (приемистости) скважин, для очистки призабойной зоны скважин от образований, обусловленных процессами добычи нефти и закачки воды. В качестве базовых химических реагентов ийпользуют соляную и плавиковую кислоты, а также уксусную, сульфаминовую, серную кислоту, смеси органических (оксидат) и неорганических (глинокислота НС1 + + HF) кислот. [c.8]

    Известны попытки использования газообразного BFg для деазотирования нефтепродуктов [106]. В последующем реагент отдували воздухом. Позже для этих целей был предложен комплекс HFg-H. O с последующим отделением продуктов центрифугированием и обработкой рафината известью и отбеливающей землей. Работы в данной области в США и в других странах продолжаются, что объясняется простотой и технологической гибкостью процессов очистки с применением BF,, возмолшостью простым изменением расхода реагента получать необходимую степень очистки от любых гетероорганических соединений. Однако метод очистки с BF3 имеет существенный недостаток — необходимость тщательной очистки готового продукта от следов BF3, что обусловлено его склонностью к гидролизу с образованием сильной гидроксофторборной и плавиковой кислот. [c.99]

    Снятие тонких слоев проводили методом стравливания образца стекломассы плавиковой кислотой. Некоторые исследователи [4] считают этот метод непригодным, так как возможно избирательное травление поверхности, образование рельефа. Действительно, мик-рогетерогенная структура стекла дает, по-видимому, основание для такого рода опасений. Однако механизм разрушения стекол химическими реагентами позволяет предположить, что неравномерное снятие слоев является результатом применения концентрированных растворов плавиковой кислоты, имеющих низкую вязкость. Предварительные опыты подтвердили, что для равномерного снятия слоев стекломассы необходимо использовать очень слабые растворы плавиковой кислоты в глицерине, что хорошо согласуется с литературными данными [5, 6]. Слои толщиной 5—10 мк снимали в растворе плавиковой кислоты (1 10) в глицерине в течение 1 ч при комнатной температуре. Как показали профилограммы, полученные на профилографе завода Калибр при увеличении х 1000, рельеф поверхности стекол после травления незначителен (не превышает I—3 мк). [c.210]

    Разработанная методика выделения и идентификации фуллеренов из структуры сплавов отрабатывалась на образцах из серого чугуна СЧ18. Выбран метод растворения стружки металла сильной кислотой с последуюш,ей экстракцией фуллеренов растворителем, основная трудность которого заключалась в подборе реагентов, способных разрушить матрицу железа, не разрушая при этом фуллерены. При использовании инфракрасной (ПК) спектрометрии было определено, что для спектральных методов исследования лучшее сочетание - плавиковая кислота (HF) и четыреххлористый углерод ( I4), которое и было использовано в дальнейшем для приготовления всех проб. [c.14]

    Очищенную от H2SiFe плавиковую кислоту, содержащую в качестве примесей небольшие количества серной кислоты, Na2SiFe и NaF, перерабатывают на криолит, фторид алюминия и фторид натрия путем осаждения этих плохорастворимых продуктов соответ-вующими реагентами [c.334]

    После разложения исследуемого образца торий обычно выделяют вместе с р. з. э. щавелевой или плавиковой кислотами с последующим отделением его перекисью водорода, гексаметилентетрамином, органическими кислотами и другими реагентами, либо осаждают торий из сильнокислых растворов в виде иодата или пирофосфата и проводят дополнительное осаждение щавелевой кислотой для отделения элементов, образующих растворимые оксалатные комплексы. В последнее время начали применять осаждение иодата или фитината тория непосредственно в присутствии щавелевой кислоты, что дало возможность достигнуть одновременного отделения Ti, 2г, и и других элементов, а также сульфатов и фосфатов. [c.157]

    Определение урана весовыми методами заканчивается высушиванием или чаще всего прокаливанием получаемых осадков с целью достижения определенной весовой формы. Наиболее распространенной весовой формой при определении урана является закись-окись урана ОзОв. Взвешиванием в виде закиси-окиси заканчивается весовое определение урана после осаждения его гидроокисью аммония, перекисью водорода, сульфидом аммония, плавиковой кислотой или фторидом аммония, а также большинством органических реагентов. Взвешивание в виде закиси-окиси удобно тем, что она негигроскопична. Кроме того, при прокаливании других окислов урана и многих его солей, независимо от его валентного состояния, конечным продуктом всегда является закись-окись урана, если температура прокаливания поддерживается в пределах 800—1050 . Прокаливание при более низких температурах может приводить к завышенным результатам определения урана вследствие более высокого содержания трехокиси урана иОзВ прокаленном остатке, чем это соответствует ее содержанию в закиси-окиси урана по формуле и зОв [374]. Для получения ОзОв иногда рекомендуется прокаливание осадков вести при постоянном токе кислорода [1026], однако такое требование является не обязательным и для получения закиси-окиси урана вполне достаточно прокаливания осадков в хороших окислительных условиях [46]. [c.56]

    После флотации одного минерала можно флотировать и ранее подавленный минерал. Для этого в пульпу вводят новый флотационный реагент—активатор, представляющий собой растворимое в воде неорганическое вещество. При флотации бе- рилла жирными кислотами в качеста - 1ктнватора применяют, например, плавиковую кислоту. Активатор либо разрушает поверхностную пленку, созданную подавителем, либо изменяет состав пленки так, что она начинает воспринимать действие собирателя. Ранее подавленный минерал вновь приобретает способность флотироваться. Oбpaбotкa активатором может предшествовать процессу флотации, повышая его эффективность. [c.39]

    После флотации одного минерала можно флотировать и ранее подавленный минерал Для этого в пульпу вводят новый флотационный реагент—активатор, представляющий собой растворимое в воде неорганическое вещество При флотации берилла жирными кислотами в качестае активатора применяют, например, плавиковую кислоту Активатор либо разрушает поверхностную пленку, созданную подавителем, либо изменяет состав пленки так, что она начинает воспринимать действие собирателя Ранее подавленный минерая вновь приобретает способность флотироваться Oбpaбotкa активатором может предшествовать процессу флотации, повышая его эффективность При флотации большое значение имеют регуляторы — вещества, непосредственно не воздействующие на поверхность минерала, а регулирующие концентрацию ионов в пульпе Особенно важно при флотации значение pH, которое влияет на диссоциацию и растворимость соединений Для регулировки pH употребляют соду, серную кислоту и др Дад е качество используемой воды играет большую роль при флотации жирными кислотами Наличие в растворе солей поливалентных металлов всегда снижает селективность флотации [c.39]

    Рассмотрим самый простой пример — растворение твердого реагента. Утверждение, что скорость данного процесса прямо пропорциональна свободной поверхности твердого тела, не совсем точно отражает действительность. Помимо зависимости от значения свободной поверхности, скорость растворения определяется еще и характеристикой поверхности, способом щ)иготовления дисперсного порошка, структурой вещества и рядом других параметров процесса. Например, считается, что скорость растворения кремнезема в плавиковой кислоте определяется скоростью реакции ЗЮг + НР, которая является функцией состояния кремнезема. Для кристаллического кварца скорость реакции будет минимальной, для кварцевого стекла — средней, для аморфного кремнезема, осажденного из раствора, — выше средней и для рентгено-аморфного кварца, полученного сверхтонким измельчением, — максимальной. [c.810]

    Плавиковая кислота служит эффективным реагентом для растворения природных и искусственных силикатных материалов (силикатных минералов и пород, стекла, керамики и пр.). Это действие обусловлено связыванием и устранением кремния из пробы в форме летучего Sip4. Обычно HF используют в смеси с концент рированной H2SO4 последняя после завершения растворения устраняет избыток HF, поскольку в противном случае плавиковая кислота может осадить некоторые нерастворимые фториды. [c.446]

    Mis hbad я ванна, состоящая из смеси реагентов (напр., из смеси азотной и плавиковой кислот, применяемой для травления) [c.139]

    Когда кристаллиты обнаженного металла разъедаются раствором, то скорость растворения меняется в соответствии с кристаллографической ориентацией независимо от влияния несовершенств кристаллитов. Некоторые смеси реагентов создают ямки с гладкими поверхностями, которые соответствуют характерным кристаллографическим плоскостям. Если это известно, то легко установить кристаллическую ориентацию. Например, на алюминии смесь дымящейся азотной, соляной и плавиковой кислот с бутилцелло-сольвом 162] образует ямки на плоскостях (100). Кристаллографическая природа питтинга алюминия в хлоридных растворах также доказана [63]. При разъедании очень тонкой фольги образуются узкие туннели , которые изменяют направление под прямым углом. Скорость растворения, по-видимому, постоянна, так как наложение анодной поляризации только расширяет фронт проникновения, но не увеличивает его скорость. [c.103]


Смотреть страницы где упоминается термин Плавиковая кислота реагент : [c.19]    [c.368]    [c.209]    [c.510]    [c.85]    [c.421]    [c.229]    [c.1566]    [c.158]    [c.151]    [c.450]   
Справочное руководство по эпоксидным смолам (1973) -- [ c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота плавиковая



© 2025 chem21.info Реклама на сайте