Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюмосиликатный катализатор свойства

    Ниже рассмотрим основные свойства алюмосиликатных катализаторов для каталитического крекинга нефтяного сырья. [c.49]

    Свойства и примерный состав алюмосиликатных катализаторов каталитического крекинга [c.50]

    Выходы продуктов каталитического крекинга зависят от глубины превращения, свойств сырья и условий проведения процесса. В табл. 1 указаны типичные выходы продуктов однократного крекинга над синтетическими алюмосиликатными катализаторами прямогонных керосиновых и соляровых дистиллятов нарафинистых и парафино-нафтеновых нефтей. Из табл. 1 видно, что суммарный выход бензина и бутан-бутиленовой фракции составляет при 50%-ной глубине крекинга около 40%, а при 60%-ной около 47 %. [c.9]


    Ценнейший вклад в науку о нефти и методах ее переработки внес выдающийся химик-нефтяник Л. Г. Гурвич. В своей книге Научные основы переработки нефти , выдержавшей четыре издания, переведенной на многие иностранные языки, Л. Г. Гурвич критически сопоставил и обобщил литературные и экспериментальные данные по химии и переработке нефти. Оригинальными являются воззрения Л. Г. Гурвича о действии водяного пара и роли вакуума при перегонке мазута, о роли серной кислоты и щелочи при очистке нефтепродуктов. Он исследовал обесцвечивающую способность отбеливающих глин по отношению к нефтепродуктам, обнаружил при этом помимо адсорбционных свойств каталитическое (полимери-зующее) действие естественных алюмосиликатов и разработал теоретические основы адсорбционной очистки масел. Л. Г. Гурвич установил закономерности, лежащие в основе современной хроматографии и каталитического крекинга на алюмосиликатных катализаторах. [c.12]

    Активность катализатора характеризуется так называемым индексом активности, представляющим собой выход бензина (в процентах массовых), полученный на данном катализаторе в стандартных условиях лабораторного испытания. Индексы активности для цеолитсодержащих катализаторов составляют около 50 для алюмосиликатных катализаторов старого типа они обычно не превышали 32—35. Алюмосиликатные катализаторы обладают кислотными свойствами и прн попадании на их поверхность щелочных металлов или азотистых оснований их активность снижается. [c.49]

    Таким образом, свойства бензинов жидкофазного каталитического крекинга почти не зависят от природы алюмосиликатных катализаторов и полностью определяются природой исходного сырья при прочих равных условиях процесса. [c.150]

    Проблема производства алюмосиликатных катализаторов с высоким индексом активности возникла в связи с разработкой отечественного процесса каталитического крекинга с циркулирующим порошкообразным катализатором. Катализатор — один из решающих факторов, определяющих выходы бензиновых фракций и их состав, а следовательно, и моторные свойства. Основные требования, предъявляемые к катализаторам для промышленных процессов каталитического крекинга, сводятся к следующему. Катализатор должен обладать достаточно высокой каталитической активностью, обеспечивающей оптимальный выход бензинового дистиллята за однократное крекирование сырья при минимальных выходах газа и кокса. У него должна быть механическая прочность, гарантирующая минимальные потери его вследствие истирания за счет пневмотранспорта и других механических факторов. Катализатор должен быть термоустойчив и сохранять свою каталитическую активность и механическую прочность при воздействии температур порядка 500—600 °С в процессе регенерации. [c.208]


    Ванадий относится к группе тяжелых металлов, отравляющих катализаторы, однако исследования era свойств показали, что наличие на алюмосиликатном катализаторе небольшого количества ванадия (0,0003—0,003%) повышает индекс активности почти на 3 пункта. В результате степень превращения сырья увеличивается по сравнению с исходным катализатором за счет увеличения выхода бензина. Увеличение выхода бензина не отражается на коксо- и газообразовании, отношение бензин кокс повышается. Добавление малых порций ванадия способствует образованию определенного количества ненасыщенных углеводородов, которые инициируют крекинг насыщенных углеводородов и тем самым увеличивают степень превращения сырья и выход бензина. Содержание ванадия ограничивается содержанием непредельных углеводородов в реакционной смеси. С увеличением количества непредельных углеводородов скорость крекинга насыщенных углеводородов уменьшается, так как на активных центрах катализатора адсорбируются в первую очередь непредельные углеводороды. Получающиеся при дегидрировании непредельные углеводороды крекируются и образуют в несколько раз больше кокса, чем парафиновые углеводороды. Кокс экранирует активные центры катализатора, в результате чего активность резко уменьшается. [c.23]

    Алюмосиликатный катализатор помещали в реакторе на полученных спеканием пористых бронзовых пластинах со средним диаметром пор 25 мкм. Катализатор состоял из тщательно просеянного песка с добавкой необходимого количества окиси железа для повышения каталитической активности. Ниже приведены некоторые свойства применявшихся катализаторов  [c.349]

    ЕСТЕСТВЕННЫЕ И СИНТЕТИЧЕСКИЕ АЛЮМОСИЛИКАТНЫЕ КАТАЛИЗАТОРЫ И ИХ СВОЙСТВА [c.10]

    Вопрос о том, какова природа активных центров алюмосиликатных катализаторов, до настоящего времени окончательно не решен. Ряд авторов считает, что катализ осуществляется кислотными центрами Бренстеда, другие приписывают определяющую роль кислотным центрам Льюиса. С появлением цеолитных катализаторов крекинга вопрос стал, по-видимому, менее ясен, так как сильное влияние на их свойства оказывает природа катионов. В частности, в ряде работ установлена корреляция активности цеолитных катализаторов с поляризующей силой катионов, измеряемой величиной ге г (где ге — заряд иона г — его радиус). [c.213]

    Свойства катализаторов оцениваются рядом физико-химических и эмпирических характеристик. Индекс активности косвенно характеризует активность катализатора, он определяется как массовый выход бензина из стандартного сырья в стандартных условиях при крекинге на данном катализаторе. Для аморфных алюмосиликатных катализаторов с низким содержанием окиси алюминия он составляет обычно 32—36, для высокоглиноземистых (содержание АЬОз 25%) индекс активности несколько выше, для цеолитсодержащих он равен 48—52. Для катализаторов из природной глины индекс активности находится в пределах 20—30. Термическая ста- [c.214]

    Особенно важен средний диаметр пор для матрицы цеолитсодержащего катализатора, так как для достижения кристаллов цеолита молекулы сырья должны диффундировать в порах матрицы. Если поры матрицы малого диаметра, то крекинг может в значительной степени проходить на активных центрах пор матрицы, т. е. свойства цеолита используются мало. Средний диаметр пор цеолитсодержащих катализаторов в настоящее время значительно больше, чем аморфных, и составляет 80—140 А. Удельные объем пор и поверхность различных синтетических алюмосиликатных катализаторов изменяются в широких пределах (0,4—0,9 см /г и 100—600 м г соответственно). [c.215]

    На свойства алюмосиликатных катализаторов сильно влияют накапливающиеся в них металлы. Отравление катализатора металлами может быть двух типов. Щелочные металлы нейтрализуют [c.216]

    Цеолитсодержащие катализаторы отравляются азотом в про мышленных условиях в значительно меньшей степени, чем аморфные. Большая часть азота в сырье сосредоточена в высокомолекулярных полициклических ароматических углеводородах, и молекулярно-ситовые свойства цеолитов препятствуют отравлению их активных центров. Сернистые и кислородные соединения сырья на активность синтетических алюмосиликатных катализаторов не влияют. [c.228]

    АЛЮМОСИЛИКАТНЫЕ КАТАЛИЗАТОРЫ I ИЗМЕНЕНИЕ ИХ СВОЙСТВ ПРИ КРЕКИНГЕ НЕФТЕПРОДУКТОВ [c.1]

    Алюмосиликатные катализаторы и изменение их свойств при крекинге нефтепродуктов. М., Химия , 1975. [c.2]

    Первые исследования каталитических свойств цеолитов, проведенные в 1960 г., показали, что цеолиты NaX и СаХ более активны в реакции крекинга н-декана, чем аморфный алюмосили-катный катализатор [21], причем кальциевая форма цеолита активнее натриевой. В присутствии цеолита КаХ в продуктах реакции отсутствовали изосоединения, но содержалось много непредельных углеводородов, а в присутствии СаХ получались такие же продукты, как и при наличии алюмосиликатного катализатора. [c.18]


    В промышленных условиях физические и химические свойства алюмосиликатных катализаторов резко изменяются. Одна из причин изменения катализатора — его спекание. Скорость и степень спекания катализаторов зависят от их химического состава, норовой характеристики, температуры процесса, среды, продолжительности обработки и др. Влияние температуры прокалки в воздухе на удельную поверхность катализаторов показано на рис. 12 (дан- [c.34]

    Изменение физико-химических свойств катализатора под действием металлов. Наши экспериментальные данные о влиянии металлов на качество аморфного алюмосиликатного катализатора представлены в табл. 42 и 43. Там же приводится качество исходного образца катализатора. [c.139]

    Как видно из этих данных, металлы, нанесенные на алюмосиликатный катализатор, не изменяют его физико-химических свойств. Удельные поверхности, насыпные плотности, поровая структура всех образцов катализаторов, независимо от природы металла и его концентрации, практически остались такими же. Обменная способность катализатора в зависимости от природы добавляемого металла изменяется по-разному. Щелочные и щелочноземельные металлы способствуют снижению кислотности катализатора. Это, видимо, является следствием замещения указанными металлами протона кислотного центра катализатора. [c.139]

    Обратимыми ядами для алюмосиликатных катализаторов являются азотистые основания они прочно адсорбируются на кислотны х активных центрах и блокируют их. При одинаковых основных свойствах большее дезактивирующее воздействие на катали — затор оказывают азотистые соединения большей молекулярной массы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Цеолит — содер ясащие катализаторы, благодаря молекулярно — ситовым свой— ствам, отравляются азотом в значительно меньшей степени, чем аморфные алюмосиликатные. [c.105]

    Вспомогательные добавки улучшают или придают некото — рые специфические физико —химические и механические свойства пеолитсодержащих алюмосиликатных катализаторов (ЦСК) крекинга. ЦСК без вспомогательных добавок не могут полностью удовлетворять всему комплексу требований, предъявляемых к современным промышленным катализаторам крекинга. Так, матрица и активный компонент — цеолит, входящий в состав ЦСК, обладают только кислотной активностью, в то время как для организации интенсивной регенерации закоксованного катализатора требуется наличие металлических центров, катализирующих реакции окислительно-восстановительного типа. Современные и перспектив — гые процессы каталитического крекинга требуют улучшения и оптимизации дополнительно таких свойств ЦСК, как износостойкость, механическая прочность, текучесть, стойкость к отравляю — Б(ему воздействию металлов сырья и т.д., а также тех свойств, которые обеспечивают экологическую чистоту газовых выбросов в атмосферу. [c.114]

    Прим брныА состав и свойства алюмосиликатных катализаторов каталитического крекинга (По различным литературным источникам) [c.37]

    Численное значение отношения СО СО в газах регенерации зависит не только от избытка воздуха и условий процесса сжигания кокса, но и от свойств катализатора, а также степени его отра-. ботанности для естественных алюмосиликатных катализаторов оно выше, чем для синтетических. Отношение СО СО увеличивается с ростом температуры, избытка воздуха, концентрации кокса на катализаторе и содержания в не железа. [c.162]

    Масагутов Р. М. Алюмосиликатные катализаторы и изменение их свойств при крекинге нефтепродуктов. М., Химия, 1975. 27Э с. [c.121]

    Свойства и происхождение балхашита могут служить доказательством того, что нерастворимые твердые вещества в горючих сланцах могли также первоначально представлять собой твердые полимеры жирных веществ или жирных кислот. Эта точка зрения подтверждается тем, что хорошо известные сланцы месторождений Грин Ривер в Колорадо, а также Вайоминга и Юта содержат относительно большое количество полутора- и бикарбоната натрия, находящегося в сланцах в виде включений белой кристаллической массы. (В одном из районов эти сланцы используются в промышленном масштабе для производства соды). Как будет показано дальше, существуют доказательства того, что конверсия тяжелых остаточных продуктов в нефть, содержащую легкие фракции, и большое разнообразие углеводородов обусловлены реакцией иона карбония, индуцируемой кислыми алюмосиликатными катализаторами, находящимися в контакте с нефтью. Кокс, Уивер, Хенсон и Хенна считают [16], что в присутствии щелочи катализ не осуществляется. В связи с этим возможно, что сохранение твердого органического вещества в битуминозных сланцах месторождения Грин Ривер и других залежах обусловлено присутствием щелочей. Предполагают, что сланцы месторождений Грин Ривер откладывались в солоноватых внутренних озерах в условиях, напоминающих условия образования современного балхашита [6]. Поэтому можно считать, что ненасыщенные растительные и животные жиры и масла представляли собой первичный исходный материал как для нефти, так и для так называемого керогена битуминозных горючих сланцев, образующих первоначально твердое заполимеризовавшееся вещество., Однако в сланцах, содержащих щелочь, НС наблюдалось медленного химического изменения, приводящего к образованию нефти [13а]. Природа минеральных компонентов битуминозных сланцев также может способствовать сохранению органического вещества и препятствовать его провращевию в нефть. Битуминозные сланцы месторождения Грин Ривер в большинстве своем содержат магнезиальный мергель. [c.83]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    Для полного представления о свойствах алюмосиликатных катализаторов следует учесть данные А. А. Михновской и А. В. Фроста [55], установивших, что алюмосиликатные катализаторы ускоряют и реакцию гидрирования. Уже говорилось о том, что образование бутана и гептана в экспериментах С. В. Лебедева нри деполимеризации полимернь[х форм изобутилена и амиленов обусловлено, по-видимому, непосредственным гидрированием соответствующих олефинов, причем это допущение сделано по аналогии с комплексным действием на олефины алюмосиликатов в области умеренных температур (150—250 °С) и таких реаге11тов, как НоЗО и А1С1д, в интервале относительно низких температур (0—20 °С). В условиях работы [51] такн<е получалось до 9 % бутана при каталитическом крекинге бутиленов. [c.50]

    Наличие в составе алюмосиликатных катализаторов 3—5 % щелочноземельных металлов (Са, Mg), а также небольших количеств по-видимому, не влияет на каталитические свойства алюмосиликата. Триоксид лгелеза в совокупности с А1зОа и 310.2 может усиливать катализ реакций дегидрогенизации. Искусственное введение в состав алюмосиликатных катализаторов кислородных соединений бора, марганца, тория, циркония и т. д., рекомендуемое многими патентами, вероятно, связано с повышением термической устойчивости катализатора или с понижением его обуглероживаемости за счет каталитического торможения реакций глубокого распада углеводородов либо, наконец, со смягчением окислительных процессов на поверхности катализатора при его регенерации горячим воздухом. [c.58]

    Цеолитсодержащие катализаторы (цеолиты) характеризуются сочетанием высоких адсорбционных и каталитических свойств, большой избирательной способностью и стабильностью структуры, поэтому в настоящее время большое значение приобретают синтетические катализаторы с добавками цеолитов. При введении пх, например, в состав алюмосиликатного катализатора крекинга значительно повышается его активность, избирательность, адсорбционная способность и паротермостабильность. Цеолиты могут быть получены как шариковые, так п микросферические. [c.14]

    Удельная поверхность и структура (размер и характер пор) являются важными характеристиками, определяющимн адсорбционные свойства адсорбента. Адсорбция зависит от величины поверхности чем больше пористость твердого тела, тем больше его общая удельная поверхность и способность к адсорбции. Для силикагелей, алюмогелей и алюмосиликатных катализаторов величина удельной поверхности может быть в пределах от 10 до 1000 м г. [c.24]

    Благодаря свойствам извлекать из сложных органических смесей в определенной последовательности органические соединения различных классов адсорбенты нашли широкое применение в промышленности. В нефтеперерабатываюш ей промышленности они до последнего времени применялись главным образом для доочистки масел после их предварительной сернокислотной или селективной очпстки. Улучшение качества смазочных масел достигается за счет все возрастающ,его применения таких адсорбентов, как отбелпва-юш,ие глины (гумбрин, ханларский бентонит), крошки синтетического шарикового алюмосиликатного катализатора (отходы основного производства) и широкопористых силикагелей. Алюмосиликатные адсорбенты-катализаторы АД и СД могут быть использованы в процессах адсорбционной очистки масел и топлив, при определении группового углеводородного состава остаточных топлив (вместо силикагеля АСК) и прн каталитическом крекинге легких керосино-газойлевых фракций п тяжелых вакуумных дистиллятов. [c.128]

    Изучение влияния содержания окиси кремния на свойства промышленных алюмокобальтмолибденовых и алюмоникельмолибдено-вых катализаторов показало, что введение 3102 увеличивает объем и средний радиус пор, повышает в 1,5 раза механическую прочность катализатора. При этом возрастают расщепляюш,ая и изомеризующая активности катализаторов У Большое значение в настоящее время уделяется катализаторам на цеолитной основе. Эти катализаторы обладают высокой активностью и хорошей избирательностью, а кроме того позволяют часто проводить процесс без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2% азота практически не влияет на их активность Применение цеолитных катализаторов часто позволяет проводить процесс при более низкой температуре Повышенная активность катализаторов на основе цеолитов объясняется более высокой концентрацией активных кислотных центров в кристаллической структуре по сравнению с аморфными алюмосиликатными катализаторами [c.322]

    Природные активированные алюмосиликатные катализаторы крекинга представляют собой главным образом монтмориллонито-вые глины, обработанные серной кислотой, сформованные и прокаленные. Применялись и другие природные алюмосиликаты — каолин, галлуазит. В процессе кислотной обработки из природного алюмосиликата удаляются кальций, натрий и калий, часть содержащихся в его структуре железа и алюминия. В катализаторах, полученных на основе различных глин, содержание алюминия (считая на АЬОз) составляет от 17,5 до 45%. Катализаторы этого типа обладают относительно низкой устойчивостью к действию высоких температур. Высокое содержание железа отрицательно влияет на их свойства, так как железо катализирует паразитную реакцию распада на углерод и водород. Антидетонационные свойства бензинов, получаемых при крекинге с катализаторами из природных алюмосиликатов, существенно ниже, чем при применении синтетических катализаторов. В настоящее время катализаторы на основе природных алюмосиликатов практически не применяют. [c.209]

    Существенное влияние на результаты крекинга оказывают содержащиеся в сырье азотистые соединения. Обладая высокой основностью, они прочно адсорбируются на кислотных активных центрах и блокируют их. Ядами для алюмосиликатных катализаторов являются азотистые оонования аммиак и алифатические амины на активность алюмосиликатов не влияют При одинаковых основных свойствах большее дезактивирующее воздействие на катализатор оказывают азотистые соединения большей молекулярной маосы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Влияние различных соединений азота, добавляемых к декалину в количестве 0,11% N, на глубину крекинга (в %) в заданных условиях характеризуется следующими данными без добавки — 41,9 с аммиаком и метиламином — 42 с диамиламином — 42,3 с пиридином — 26,8 с индолом — 25,1 с а-нафтиламином — 21,8 с хинолином — 8,5 с акридином — 8,2. [c.228]

    Все катализаторы крекинга различаются по структуре, форме, размерам частиц, методам приготовления, физико-химическим свойствам, уровню активности, селективности, стабильности, но все они обладают кислотными свойствами, что является основой их каталитической активности. Кроме того, практически все катализаторы крекинга содержат алюмосиликатные системы. Поэтому в настоящей монографии термин алюмосиликатные катализаторы относятся ко всем типам катализаторов крекинга, включая природные и синтетические, свежие и равновесные, аморфные и кристаллические (цеолитсодержащие), микросферические и щари-ковые и др. [c.8]


Смотреть страницы где упоминается термин Алюмосиликатный катализатор свойства: [c.175]    [c.11]    [c.54]    [c.57]    [c.73]    [c.80]    [c.159]    [c.159]    [c.180]    [c.17]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте