Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрий получение дисперсий

    Производство поливинилацетата эмульсионным способом осуществляется в присутствии растворимых в воде инициаторов окислительно-восстановительных систем, состоящих из перекиси водорода и соли двухвалентного железа (в присутствии персульфатов калия и натрия). В качестве эмульгаторов применяют различные мыла, соли алифатических сульфокислот, а при получении дисперсий — поливиниловый спирт. Для поддержания определенного pH среды добавляют буферные соединения — бикарбонат натрия, муравьиную кислоту и др. [c.36]


    Сотрудник А выполнял работу связанную с получением и использованием дисперсии металлического натрия в органическом растворителе До атого ему неоднократно приходилось работать со щелочными металлами однако с необходимостью получения дисперсии он столкнулся впервые В оригинальнои статье откуда сотрудник заимствовал методику работы ничего не говорилось о повышенной опасности дисперсии щелочных металлов указывалось только что все манипуляции необходимо проводить в аргоне [c.238]

Рис. 14.20. Трехлучевые интерферограммы дисперсии в парах натрия, полученные при разной плотности Рис. 14.20. <a href="/info/449905">Трехлучевые</a> интерферограммы дисперсии в <a href="/info/697296">парах натрия</a>, полученные при разной плотности
    Для выделения порошкообразного полимера из полученной дисперсии (если она не используется в качестве самостоятельного продукта) коагуляцию можно проводить при помощи кислот, водных растворов солей, например хлористого натрия, сернокислого алюминия, хлористого кальция и др. Дисперсность получаемых полимеров зависит от температуры осаждения при 15—25° получается мелкий порошок. Для облегчения фильтрования дисперсию следует осторожно прогреть до 35—50°. Максимально допустимая температура при подобной обработке устанавливается по отдельной пробе. Если проводить коагуляцию из быстро подогретой дисперсии или осторожно перегреть ее для последующего [ коагулирования, часто происходит комкование сополимера. Подобное явление иногда наблюдается при недостаточном предварительном разбавлении дисперсии водой перед ее i коагулированием. Для удаления растворимых в воде солей и других примесей полимер перед высушиванием необхо- димо тщательно промыть. Сушку можно осуществлять на [c.41]

    Тиоколовый латекс отмывают водой от хлористого натрия и избыточного тетрасульфида натрия и полученную дисперсию тиокола коагулируют кислотой. [c.266]

    Для десульфурирования полимера можно применять также сульфид или сульфит натрия. После отмывки водой полученная дисперсия дисульфидного полимера коагулируется кислотой (в случае синтеза твердых тиоколов) или подвергается обработке гидросульфидом натрия в присутствии сульфита натрия —для расщепления полимера по дисульфидным связям с целью получения жидких олигомеров  [c.439]


    Стойкость тройной системы латекс—дисперсия окиси— эмульсия масла не зависит от порядка введения комлонентов. Хранение таких смесей больше минуты недопустимо, так как происходит разрушение масляной эмульсии. Тройную смесь приготавливали и коагулировали следующим образом. Латекс смешивали с дисперсией окиси из расчета 80 вес. ч. окиси на 100 вес, ч. смеси полимера с маслом, а затем добавляли эмульсию масла — 17,6 вес. ч. на 100 вес. ч.. полимера. В полученную смесь немедленно выливали 13%-ный раствор хлористого натрия, а затем, после некоторой паузы, прибавляли 3,5%-ный раствор серной кислоты. Раствор выдерживали при рН=2—3 в течение 30 мин, отделяли серум, каучук промывали и сушили. [c.197]

    Серии линий рентгеновского излучения. На рис. 3.38 представлена подробная диаграмма серий линий рентгеновского излучения, которые существуют для каждого элемента. Степень сложности серии является функцией атомного номера элемента. Так для углерода, у которого имеются два электрона на А-оболочке и четыре электрона на L-оболочке, возможна лишь генерация линий Ка рентгеновского излучения. Хотя электроны с L-оболочки углерода могут быть удалены при столкновении, на Л4-оболочке нет электронов, которые бы смогли заполнить вакансию. Натрий (2=11) имеет один электрон на Л4-оболоч-ке, так что могут испускаться как Ка, так и A -линии рентгеновского излучения. Для тяжелых элементов со сложной структурой оболочек, таких, как свинец, серия линий рентгеновского излучения становится более сложной. В гл. 6 приведены примеры рентгеновских спектров, полученных в диапазоне энергий 1—20 кэВ с помощью рентгеновского спектрометра с дисперсией по энергии для титана А , Ар (рис. 6.2), меди Ка, Ар, L (рис. 6.8), а также L-серии и М-серии для тербия (рис. 6.9). Из этих спектров видно, что сложность спектра возрастает с атомным номером. Отметим, что на этих рисунках многие линии не разрешаются, например Ка —Ааг, из-за слабого разрешения спектрометра с дисперсией по энергии (см. гл. 5). [c.74]

    Если же на компенсатор падают составные части белого света, то, подобрав дисперсию поворотом призмы Q относительно Р, можно добиться сведения составляющих в белый луч, т. е. скомпенсировать дисперсию исследуемой жидкости. Положение полученной в результате компенсации границы свет — тень для белого света при этом соответствует положению этой границы для желтой линии натрия и при отсчете получается показатель преломления для линии О натрия. [c.182]

    Аналогичный метод использовали также для получения дисперсий сополимеров е-капролактона с окисью этилена и другими эпоксидами [49. В качестве катализаторов применяли пятифтористый фосфор и эфират трехфтористого бора. Дисперсионную полимеризацию р-пропиолактона вели в циклогексане в присутствии эфирата трехфтористого бора с использованием сополимера лаурилметакрилата с глицидилметакрилатом в качестве предшественника привитого стабилизатора [45]. Описана также дисперсионная полимеризация лактамов в присутствии синтетических каучуков в растворе алифатических углеводородов [50]. Вероятно происходят реакции прививки на растворимый полимер. Например, е-капролактам при обработке натрий-е-капролактамом и толуилендиизоцианатом как активатором дает в алифатическом углеводороде в присутствии полибутадиена дисперсию полимера е-капролактама. Последнюю получали также в смеси алифатических и ароматических углеводородов при действии натрия в присутствии статистического сополимер ного предшественника стабилизатора на основе лаурилметакрилата и Л -метакрилоилкапро-лактама [45]. [c.244]

    В лабораторных условиях разработан метод получения изомерных кислот Сю с выходом 84—86% от теорет., считая на 1,3-бутадиен при соотношении натрия к 1,3—бутадиену, равном 1,1 1 (в молях), в среде диэтилового эфира этиленгликоля в присутствии /г-терфенила и температуре реакции —35 —40° С. Подробная методика получения смеси кислот Сю, стояш ая из стадии получения дисперсии металлического натрия, димери-созации 1,3-бутадиена, карбонизации динатрийоктадиенов, выделения непредельных кислот из реакционной смеси и гидрирования, описана в нашем первом сообщении [14]. [c.213]

    Стабильные суспензии карбоната кальция в сульфонатах кальция получают взаимодействием натрия с водным раствором хлористого кальция и карбоната натрия с последующим обезвоживанием и фильтрованием [84]. Имеется сообщение о процессе производства коллоидно-дис-персного карбоната кальция смешением раствора обычного сульфоната кальция в масле с известью и водой и последующим пропусканием через полученную смесь газообразной двуокиси углерода [88]. Образующиеся нептизированные сульфонатом частицы содержат 70—90% карбоната кальция и 10—30% гидрата окиси кальция и имеют почти сферическую форму диаметр частицы — предпочтительно менее 60 А. Они чрезвычайно трудно отделяются отстаиванием. По данным рентгенодифракционных исследований, эти частицы не обладают кристаллической структурой. Недавно сообщалось [70] с получении дисперсий карбоната кальция, содержащих около 5 моль карбоната на 1 м.оль диспергирующего сульфоната. Такие дисперсии получают нейтрализацией сульфоновой кислоты, избытком извести в спиртах с последующим пропусканием двуокиси углерода. Включение щелочных компонентов в сульфонатные присадки облегчается применением фенола и алкилфенолов. После взаимодействия среднего сульфоната, фенолов, воды и гидрата окиси кальция или бария воду удаляют нагреванием. Полученный продукт, представляющий собой сложную смесь фенолята, сульфоната и диспергированного основания, можно обработать двуокисью углерода для выделения части фенола [13]. Если взять большой избыток алкилфенола и основания по отношению к сульфонату и воздействовать на смесь двуокисью углерода, т получаются высокоосновные сульфонаты, содержащие 8 моль щелочного-бариевого соединения на 1 моль сульфоната. Для полного удаления фенола применяют обработку двуокисью углерода перед обезвоживанием в этом случае получаемый продукт содержит 1—3 моль основного бария (вероятно, в виде карбоната) на 1 моль сульфоната бария [237]. [c.24]


    Сотрудник приготовил дисперсию натрия в толуоле в колбочке вместимостью 200 мл под аргоновой подущкой , затем вылил в токе аргона полученную дисперсию в литровую реакционную колбу и отложил пустую колбочку на поддон для грязной посуды, стоящий рядом с установкой в вытяжном шкафу. Он заметил, что на стенках и горле колбочки остался налет мелкораздробленного натрия, и собирался ополоснуть ее спиртом. Однако сразу же, как только в колбочку попал воздух, произошла вспышка. Сотрудник инстинктивно отдернул руки и при этом уронил капельную воронку, содержавшую 200 мл органического растворителя. Воронка разбилась, растворитель воспла.менился, огонь охватил реакционную колбу, К счастью колба не разбилась и пожар удалось сравнительно быстро ликвидировать с помощью углекнслотных огнетушителей. [c.104]

    Для получения монолитной пленки из дисперсии пластомеров необходимо сплавление рыхлого, непрочного слоя, образовавшегося после испарения воды. Однако в ряде случаев нагревание, необходимое для такого сплавления или для вулканизации эластомеров, недопустимо (например, в случаях покрытия на пищевых продуктах). Для получения дисперсий, образующих достаточно прочные и эластичные покрытия при комнатной температуре, используют композиции сополимеров с низкой температурой стеклования (например, у сополимера винилхлорида и винилиденхлорида с соотношением 66 34 = =7°С) и насыщенных эластомеров. Состав композиции при совместной коалесценции определяет структуру и свойства формируемого покрытия. Но более целесообразным является применение сополимеров, например винилиденхлорида и 2-этилгексилакрилата в сотношении 60 40. При содержании сухого остатка в латексе выше 40% образуется однородная пленка с достаточной прочностью и высокой эластичностью. Вязкость дисперсии регулируется незначительными добавками аль-гината натрия (0,5—1%) или поливинилового спирта (1—3%). Будучи водорастворимыми, эти полимеры повышают водо- и паропроницаемость готовых пленок, не влияя на их механические свойства. [c.180]

    Получение дисперсии антиоксиданта ДФФД массовой концентрации 20 % в 8 % водном растворе олеата натрия. [c.146]

    Реакция между дихлорэтаном и полисульфидом натрия протекает с выделением тепла, из-за чего возникает необходимость в регулировании температуры. Возможность регулирования температуры облегчается проведением поликонденсации в инертной дисперсионной среде. Целесообразно проводить реакцию в присутствии диспергирующего средства, с тем чтобы продукт реакции получался в виде водной дисперсии, а не в форме компактной массы, которая, ввиду плохой растворимости поликонденсата, затрудняла бы операции последующей обработки. Полученную дисперсию тиокола в воде промывают декантацией водой, после чего проводят коагуляцию минеральной кислотой. С целью увеличения растворимости исходных веществ к дисперсионной среде иногда добавляют этиловый спирт. Применение в качестве дисперсионной среды водных растворов различных спиртов, ацетона или их смесей имеет также целью уменьшить неприятный запах поликонденсата (примеси, придающие запах, растворяются в дисперсионной среде и удаляются с нею). В качестве диспергирующих средств чаще всего применяют гидроокись магния, а также мелкодисперсионные окислы, гидроокиси или углекислые соли щелочноземельных металлов. [c.487]

    Растворяют 3 г хлопкового линтера в 100 мл 85%-ной Н3РО4 при 2° С при перемешивании, а затем оставляют полученную дисперсию на 2 дня в холодильнике для полного растворения. Полученный раствор выливают тонкой струйкой при энергичном перемешивании в ледяную воду (можно рекомендовать для этой цели пульверизатор). Во время осаждения для снижения кислотности добавляют водный раствор едкого натра и лед для охлаждения. Суспензию нейтрализуют до pH 6, дают отстояться, промывают несколько раз водой путем декантации и затем фильтруют. Полученный продукт осторожно сушат. [c.329]

    При получении дисперсий из растворов полиолефинов используют, как правило, гидрофильные водорастворимые эмульгаторы, процесс ведут в высокоскоростных смесителях. В качестве растворителей используют тетрагидрофуран или хлорированные углеводороды, в качестве эмульгаторов — натриевые или калиевые солн димеризованной канифоли, сополимеры окиси этилена и окиси пропилена, додецилфенилокси-сульфонат натрия. Для повышения концентрации дисперсий вводят сливкоотделяющие агенты — водорастворимые полимеры, содержащие группы МеЗОз, где Me — щелочной металл или NH4. Чтобы улучшить условия диспергирования полиолефинов в воде, в состав их макромолекул вводят определенное количество полярных гидратирующихся групп либо путем сополимеризации олефинов с моно- и дикарбоновыми кислотами, либо в результате окисления полиолефинов. Благодаря этому удается получить высокодисперсные латексы, устойчивые в отсутствие эмульгаторов и защитных коллоидов [116]. [c.145]

    Полученная дисперсия полимера, отмытая водой от непрореагировавшего полисульфида натрия и других солей, подвергается коагуляции минеральной кислотой. При этом получается твердый тетрасульфидный полимер, который после промывки и высушивания может быть использован как товарный продукт. [c.507]

    Большое значение обменные реакции имеют при получении сополимерных тиоколов на основе двух разных алкилдигалогенидов. Вследствие различной растворимости дигалогенидов в воде и скорости взаимодействия с полисульфидом натрия трудно получить сополимеры заданного состава. Однако, если смешать дисперсии двух гомополимеров высокой молекулярной массы в нужных соотношениях в присутствии незначительного количества дисульфида натрия, то можно получить статистический сополимер, близкий по составу к рассчитанному на основании соотношения компонентов исходной смеси [10, с. 477]. [c.561]

    Сульфонатные присадки в основном представляют собой соли кальция или (и) магния, реже применяются соли натрия, бария и цинка. В зависимости от содержания металла в сульфонатных присадках их подразделяют на нейтральные, средне- и высокощелочные. Средне- и высокощелочные сульфонатные присадки содержат в своем составе дисперсию карбонатов и гидроксидов металлов, стабилизированную сульфонатом металла. Получение стабильных систем сульфонатных присадок в маслах связано с особенностями подбора сырья, сульфирующего агента, промоторов, а также технологических приемов при их получении. [c.445]

    С полученным мылом изучали условия нриготовления. устойчивых и подвижных дисперсий сажи типа ХАФ. Дисперсии готовились в шаровой и струйных мельницах. 20%-ные кинетичеоки и агрегативно устойчивые, подвижные, с вязкостью 1,20°Е дисперсии сажи, не расслаивающиеся в течение суток, получали при следующем соотношении компонентов, (вес. ч.) сажа — 100, вода — 340, КМТМ—8, адкий натр—0,6. [c.182]

    Получение одной тонны сажемаслоналолненного каучука требует следующего количества продуктов латекс СКС-ЗОАРК — 3150 кг, сажа ХАФ — 333 кг, масло ПН-6 — 99/сг, вода вофатитовая для приготовления дисперсии сажи— 1311 кг, КМТМ (на сухое вещество) — 26,6 кг, едкий натр — [c.183]

Рис. 7.4-6. Однокаяальная потокораспределительная система ПИА для определения ионов металлов методом атомно-абсорбционной (АА) спектрометрии пламени. Записи получены при скорости потока 4,9 мл/мин и объеме инжектируемой пробы 150 мкл [7.4-3]. а — градуировочный цикл для 1щнка, полученный при инжектировании стандартных растворов в диапазоне 0,10-2,0 м.д. б — выход самописца для стандартного раствора 1,5 м.д., полученный 1 — при инжектировании через систему ПИА и 2 — при непрерывном распылении в обычном режиме(также со скоростью 4,9 мл/мин). О представляет величину коэффициента дисперсии, которая в случае 2 равна 1 в — градуировочный цикл для серии стандартных растворов свинца (2-20 м.д.), записанный без добавки (0%) и с добавкой (3,3%) хлорида натрия к стандартным растворам. Рис. 7.4-6. Однокаяальная потокораспределительная система ПИА для <a href="/info/628773">определения ионов металлов методом</a> <a href="/info/5509">атомно-абсорбционной</a> (АА) <a href="/info/379563">спектрометрии пламени</a>. Записи получены при <a href="/info/21610">скорости потока</a> 4,9 мл/мин и объеме инжектируемой пробы 150 мкл [7.4-3]. а — градуировочный цикл для 1щнка, полученный при <a href="/info/1155368">инжектировании</a> <a href="/info/8064">стандартных растворов</a> в диапазоне 0,10-2,0 м.д. б — выход самописца для <a href="/info/8064">стандартного раствора</a> 1,5 м.д., полученный 1 — при <a href="/info/1155368">инжектировании</a> через систему ПИА и 2 — при непрерывном распылении в обычном режиме(также со скоростью 4,9 мл/мин). О представляет <a href="/info/264139">величину коэффициента</a> дисперсии, которая в случае 2 равна 1 в — градуировочный цикл для <a href="/info/737376">серии стандартных растворов</a> <a href="/info/352900">свинца</a> (2-20 м.д.), записанный без добавки (0%) и с добавкой (3,3%) <a href="/info/1942">хлорида натрия</a> к стандартным растворам.
    Эмульсии имеют большое практическое значение. К эмульсиям относятся молоко, сливки, майонезы, маргарин, яичный желток, млечный сок каучуконосов, латексы, битумные эмульсии в дорожном строительстве, препараты для жирования кож, средства для опрыскивания растений, эмульсии воды в нефти и мн. др. Эмульсионная полимеризация применяется для получения синтетических латексов (Догадкин). Водные дисперсии высокополимеров широко применяются для изготовления пленок и различных покрытий (Воюцкий). В организме жиры и липоиды переносятся кровью в виде эмульсий и комплексов с -глобулином (хиломикронные эмульсии), обеспечивая жировое питание. В фармацевтической промышленности кшогие лекарственные веи ества применяются в виде эмульсий, причем обычно эмульсии Л1 в используются в составе внутренних лекарств, а эмульсии в м — наружных средств. В ряде случаев эмульгированием удается замаскировать или ослабить неприятный вкус масел и смол, например, в эмульсиях рыбьего жира, касторового масла и др. В качестве эмульгаторов жирных масел применяют крахмальный клейстер, яичный желток, камедь, декстрин, желатину, казеинат натрия и др. Можно указать также на эмульсии акрифла-вина, этиламинобензоата (для местного анестезирования), медицинского минерального масла, бактерицидные эмульсии в/м с 97% растительного масла (для лечения тепловых ожогов), разнообразные эмульсионные мази, пасты и др. [c.160]

    В табл 1.3 приведены свойства ПВАД, полученных нами при эмульсионной полимеризации ВА в присутствии анионогенного эмульгатора — смеси алкилсульфонатов натрия ( волгоната ) СяН2я+150зЫа (где =12- 18) и персульфата калия в качестве инициатора. ММ практически не зависит от концентрации эмульгатора, а количество коагулюма снижается с увеличением концентрации последнего. Концентрация инициатора также незначительно влияет на молекулярную массу ПВА, но позволяет регулировать содержание в дисперсии недрореагировавшего мономера. Снижение ММ полимера может быть достигнуто постепенным введением ВА в реакционную смесь (рис. 1.7). При этом уменьшается концентрация мономера в полимерно-мономерных частицах, что приводит к снижению скорости и степени полимеризации ПВА. Аналогичное явление обнаружено при эмульсионной полимеризации акриловых мономеров [31, с. 205]. [c.26]

    Получены дисперсии различных сополимеров винилацетата, содержащих обычно небольшое количество сомономера, такого, как метакриловая кислота, монометилмалеат, бутоксиметакрил-амид, винилпропионат и винилверсатат [31 ]. Дисперсии поливинилацетата, полученные в циклогексане, гидролизом непосредственно были превращены в дисперсии поливинилового спирта [34]. Этого добивались путем прибавления вначале метанола к перемешиваемой дисперсии поливинилацетата, а затем раствора метилата натрия или серной кислоты в метаноле. После 3 ч перемешивания при 30 °С получили грубую дисперсию поливинилового спирта степень гидролиза 75%. Варьирование условий дает материал со степенью гидролиза до 98,5%. [c.236]

    На основе полимерных дисперсий в органических жидкостях могут быть получены как чувствительные к давлению, так и термоотверждаемые типы адгезивных мaтepiиaлoв. Дисперсии поливинилацетата, полученные в алифатических углеводородах при содержании твердых веществ до 50%, могут быть превращены путем гидролиза метилатом натрия в соответствующие дисперсии поливинилового спирта. Материал этот можно использовать как адгезив. [c.307]


Смотреть страницы где упоминается термин Натрий получение дисперсий: [c.243]    [c.393]    [c.121]    [c.238]    [c.258]    [c.216]    [c.403]    [c.609]    [c.392]    [c.312]    [c.332]    [c.124]    [c.217]    [c.148]    [c.267]   
Методы элементоорганической химии Кн 2 (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Натрий получение



© 2025 chem21.info Реклама на сайте