Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уранил соли, восстановление

    За исключением реакторов, работающих на гомогенном горючем, большинство современных исследовательских и энергетических реакторов используют уран в металлическом состоянии в виде сплава или чистого металла. Металлический уран можно получать высокотемпературным восстановлением галогенидов или окислов электролизом расплавленных солей или реакцией с активными металлами. Обычно металлический уран получают восстановлением его тетрафторида кальцием или магнием. [c.108]


    Уран получают электролизом расплавленных солей и восстановлением галогенидов урана (IV) магнием или кальцием. [c.511]

    Опыт 10. Восстановление солей уранила [c.140]

    Четырехвалентный уран в растворе получают либо растворением его солей, либо восстановлением раствора шестивалентного урана. Уранил-ион можно восстановить до урана (IV) различными металлами (РЬ, 2п, В1 , Ag, С(1 и др.), а также амальгамами этих элементов [8]. Восстановление урана (VI) обычно проводят в сильнокислой среде, так как при этом создаются более благоприятные условия для количественного восстановления согласно измерениям [c.27]

    Для восстановления урана (VI) применяется как металлический цинк [645], так и его твердые и жидкие амальгамы [458, 536, 645, 710, 772, 823, 913]. Металлический цинк полностью восстанавливает уран (VI) до урана (IV) при кипячении сернокислых или солянокислых растворов солей уранила. При этом некоторая часть урана. (VI) восстанавливается также до урана (III). [c.78]

    В. С. Сырокомский и К. Н. Жукова [2511 впервые показали, что уран (VI) может быть легко восстановлен до урана (IV) при добавлении небольшого избытка раствора соли хрома (II) к сернокислому раствору соли уранила. Вследствие высокой восстановительной способности хрома (II) (окислительно-восстановительный потенциал пары Сг (1П)/Сг(11) равен—0,41 в) восстановление заканчивается в течение нескольких секунд. Избыток восстановителя удаляется простым встряхиванием восстановленного раствора в течение 2—3 мин. при доступе воздуха или при стоянии в течение 6—10 мин. Преимуш,ество применения солей хрома (II) по сравнению с восстановлением амальгамами металлов и самими металлами состоит в том, что для восстановления солями хрома требуется очень мало времени и выполняется оно чрезвычайно просто. [c.86]

    Соли титана (III) по сравнению с хлоридом олова (И) более легко восстанавливают уран (VI) до урана (IV) [344]. Вследствие этого Для восстановления урана (VI) растворами солей титана (111) нагревания не требуется. Избыток восстановителя устраняют добавлением трехокиси висмута, которая восстанавливается до металлического висмута [781]. Металлический висмут и избыток трехокиси висмута отфильтровывают и фильтрат титруют, как обычно. Для удаления избытка восстановителя более удобным оказалось применение перхлората ртути (И) [998], так как в этом случае необходимость в фильтровании раствора перед титрованием отпадает. [c.87]

    Методы, основанные на титровании урана (VI) растворами восстановителей, обладают тем преимуществом, что позволяют исключить предварительное восстановление растворов уранила. Однако точность этих методов значительно ниже. Для титрования урана (VI) наиболее часто применяют соли хрома (II) [511, 996] и титана [c.98]


    При восстановлении гидросульфитом выделяется свободная сера. Кроме того, образуются осадки сульфидов металлов группы сероводорода. При растворении осадка фосфатов в серной кислоте они в раствор не переходят и отделяются фильтрованием. Восстановление ронгалитом ведут при нагревании до 80—90°. Соли хрома (II) легко восстанавливают уран (VI) до урана (IV) при комнатной температуре. Восстановление проводят в солянокислых или хлорнокислых растворах. Азотная кислота мешает восстановлению. Вследствие того, что в присутствии сульфатов осаждение урана (IV) замедляется, а при большом их содержании становится неполным, серную кислоту при восстановлении также не применяют. Одновременно с ураном восстанавливается железо (III) до железа (II). [c.269]

    Титан (III) и (II). При определении титана в титановых белилах [10], титановых минералах [10], в сталях [8], в веществах, содержащих уран [11], титруют стандартным раствором соли железа (П1) (обычно в атмосфере неактивного газа) [8, 9] после растворения анализируемого материала и восстановления Tii " в редукторе. Конечную точку титрования определяют электрометрически или визуально. [c.153]

    Уран (VI). Условия количественного восстановления U растворами солей хрома [И] изучались рядом исследователей [58, 65, 70-72]. [c.174]

    Значительно большее число работ посвящено амперометрическому титрованию восстановленного урана окислителями. Уран (VI) восстанавливают обычно в редукторах того или иного типа (висмутовый, кадмиевый, цинковый — так называемый редуктор Джонса) или электролитически. Последний способ предпочтительнее потому, что при нем в раствор соли урана не вносится посторонних ионов. В качестве окислителей применяют перманганат , церий " (IV), железо (III), ванадат аммония и. и. в за- [c.323]

    Несколько необычен еще один метод, основанный на образовании комплексного соединения урана с алюминием и лимонной кислотой раствор, содержащий уран (VI) и лимонную кислоту, титруют раствором соли алюминия по току восстановления урана (VI) на капельном ртутном электроде при —0,53 в (Нас. КЭ). Образуется тройной комплекс с соотношением алюминия к урану, равным 1 1. [c.325]

    Осадки гидратированного тетрафторида образуются при прибавлении растворимых фторидов к растворам соли уранила, восстановленным посредством сернокислого железа (И), хлористого олова, электролитическим путем или, наконец, фотохимически в присутствии этилового спирта . Осадки обычно хлопьевидны, трудно фильтруются, что создает дополнительные затруднения при производстве продукта в крупном масштабе. [c.149]

    Более чистую иОг можно получить прокаливанием органических солей урана. В этом случае не нужно вводить восстановитель, так как восстановление достигается за счет остатка органической кислоты. Еще Берцелиус в (1824 г. получал иОг, прокаливая оксалат уранила в отсутствие воздуха 372]. Теплота образования иОг составляет 256,6 ккал/моль-, иОг, растворяясь в кислотах (растворение идет с трудом), дает соли четырехвалентного урана. [c.354]

    Соли четырехвалентного урана могут быть получены восстановлением солей уранила водородом в момент выделения (например, при действии металлического цинка в присутствии разбавленной серной кислоты) или электролитическим восстановлением. [c.359]

    Весьма чувствительной реакцией на уран является давно известная реакция с ферроцианидом калия (желтой кровяной солью). При больших количествах урана образуется бурый осадок, а при малых — буро-красное окрашивание, заметное даже при содержании урана меньше 1 мкг. Если требуется открывать уран в присутствии железа или меди, также реагирующих с ферроцианидом, то их предварительно восстанавливают до двухвалентного и одновалентной соответственно. Восстановление можно провести тиосульфатом натрия. [c.381]

    К настоящему времени имеется несколько методов получения урана и его соединений. Ураносодержащие руды вскрывают растворами Н2804 или ЫагСОз, получая соли уранила, например и02304, которые экстрагируют или удаляют методом ионного обмена. Полученные продукты превращаются в УзОв, который восстанавливается до иОг, последний с помощью НР может быть переведен в Ур4. Металлический уран получают восстановлением ир4 с помощью кальция или магния. [c.406]

    Растворы урана (IV) обычно приготовляют восстановлением растворов солей уранила. Для восстановления ионов уранила органическими восстановителями, такими, как соли муравьиной или тцавелевой кислот, были использованы фотохимические методы, которые, однако, не являются широко распространенными. Но поскольку фотохимическое восстановление уранил-иоиа оксалатом хорошо воспроизводимо, эта реакция оказалась весьма полезной в фотохимии в качестве актинометрической. Химическое восстановление растворов уранила возможно различными реагентами в аналитической химии для этой цели часто применяется амальгама цинка. Так как растворы, восстановленЕ ые химическими методами, содержат продукты окисления восстанавливающего агента, то для более качественного восстановления предпочтительнее электролитические методы. Чтобы предотвратить переход полученного на катоде урана (IV) к аноду и последующее повторное окисление его, в этих методах часто используют ячейки с ионообдшнными люмбранами. [c.129]


    Получение и восстановительные свойства соединений урана йV). В пробирку поместите 2—3 гранулы цинка и добавьте по 1 мл раствора нитрата уранила U02(N0з)2 и концентрированной соляной кислоты. Наблюдайте за изменением желто-зеленой окраски раствора соли уранила в результате восстановления урана (VI) до урана (1У). Содержимое пробирки разлейте поровну в три пробирки. В первую пробирку по каплям добавьте раствор перманганата калия .ЕО вторую - фаствор метаванадата аммония. в тр тью—1—2 капли раствора соли железа (III) (катализатор) й раствор дихромата калия. Наблюдайте обесцвечивание КМп04 в первой пробирке, восстановления ЫН УОз до [c.244]

    При восстановлении урана(У1) сульфатом хрома(П) сернокислый раствор Комплексной соли переливают из стакана в коническую колбу вместимостью 25 мл, прибавляют 3—4 мл Н2804 (1 1) и после перемешивания прибавляют из бюретки редуктора по каплям необходимое количество восстановителя и сверх Того небольшой избыток. По расчету на 1 мг МазЗО необходимо около 30 мг СгЗО . Так как раствор хрома(П) может содержать небольшое количество хро-Ма(П1), то практически к исследуемому раствору прибавляют на каждый миллиграмм КааЗО 1 мл восстановленного раствора сульфата хрома, содержащего. 50 мг Сг804. После 5—6-минутного взбалтывания раствора или пропускания, воздуха через отрезок стеклянной трубки избыток хрома(П) окисляется кислородом воздуха до хрома(1П) уран(1 V) оттитровывают раствором ванадата аммония. [c.72]

    В. М, Звенигородская и Л. П. Рудина [157, 184] использовали трудную растворимость тетрафторида урана для определения общего содержания урана. Предложенный ими метод основан на предварительном восстановлении шестивалентного урана до четырехвалентного солями двухвалентного железа в присутствии значительного избытка плавиковой кислоты. Так как образующиеся в результате реакции ионы трехвалентного железа связываются в прочный растворимый комплексный анион [РеРе ], а четырехвалентный уран выпадает в осадок в виде нерастворимого тетрафторида, то восстановление шестивалентного урана очень быстро завершается полностью. Разработанный метод, получивший название фторидного, нашел применение главным образом для отделения урана от мешающих элементов и последующего его определения другими методами, В связи с этим подробное описание метода приводится в разделе Методы отделения . [c.65]

    Наибольшее применение для опреде тения урана в бедных рудах нашел ферри-фосфатно-нитритный метод, который основан на разложении навески образца фосфорной кислотой с добавлением HNO3 или Н2О2 и восстановлении урана (VI) солью Мора. Избыток соли Мора и восстановившиеся элементы с переменной валентностью (Fe, As, V, W, Мо, Sn, Си, Мп и др.) окисляют нитритом натрия, избыток которого затем разрушают мочевиной уран (IV) титруют стандартным раствором NH4VO3. [c.352]

    Недавно мембраны были использованы в производстве четырехфтористого урана по методу Эксцера [Higgins, Ind. Eng. hem., 50, 285, 1958)]. Основными стадиями этого процесса являются ионообменная очистка и концентрирование, осаждение из раствора гидрата после электролитического восстановления уранила в ион четырехвалентного урана и дегидратация в зеленую соль. [c.164]

    При осаждении уротропином в растворе устанавливается pH 5—5,5. В этих условиях титан отделяется от никеля, кобальта и марганца. При введении в раствор аммонийных солей происходит также отделение титана от редкоземельных элементов, не осаждающихся уротропином в присутствии солей аммония. Метод имеет довольно ограниченное применение, так как не позволяет отделять титан от таких элементов, как железо. (П1), алюминий, медь, хром, уран, цирконий, торий и бериллий, которые выделяются из раствора при pH ниже 5. Имеется указание об использовании уротропина при анализе легированных сталей для совместного отделения титана, и пиобвя от железа, предварительно восстановленного до двухвалентного состояния. Применение пиридина, создающего в растворе pH около 6, предложено Э. А. Остроумовым для отделения железа, алюминия, титана и друз их элементов от марганца, кобальта, никеля, щелочных и щелочноземельных металлов. Доп. перев.  [c.654]

    Оксисульфид иОЗ образуется при восстановлении иОз или ОзОв углеродом в присутствии сероводорода, а иОгЗ, как уже упоминалось, выделяется из растворов солей уранила при действии сульфида аммония. [c.369]

    Полярографическое определение урана было исследовано Кольтгофом и Х аррисом [1016], установившими независимость потенциала полуволны от кислотности раствора, с одной стороны, и большую зависимость диффузионного тока от этого же фактора, а также от наличия различных солей, с другой. Более поздние работы по полярографии урана были выполнены чешскими исследователями [1016], показавшими возможность определения 0,08% урана в рудах в присутствии железа и 0,008% в его отсутствие (после экстрагирования железа эфиром). Современное состояние полярографии урана освещено в докладе А. П. Виноградова [967] и в книге Т. А. Крюковой, С. И. Синяковой и Т. В. Арефьевой [55]. Очень интересен и практически важен тот факт, что ионы ванадия и здесь сказываются на определении урана они увеличивают высоту волны восстановления урана. Это явление, наблюдавшеесу различными исследователями, было изучено В. Г. Сочевановым с сотрудниками [1017] и затем Ю. В. Морачевским и А. А. Сахаровым [1018]. Если ванадий присутствует в руде вместе с ураном и содержание его неизвестно, то полярографическое определение урана невозможно если же исследуемый раствор урана не содержит ванадия, то можно, вводя определенные количества ванадия, в несколько раз повысить высоту волны урана и тем самым улучшить условия его определения. [c.385]

    Перекисно-ураниловый актинометр практически не изменяется при использовании, так как нужно заменять только перекись водорода, израсходованную вследствие фотохимического распада. После длительной работы раствор доводят до исходного объема отгонкой воды. Восстановления в не происходит. Если, согласно Гейдту [24], восстанавливается в то последний снова превращается в реагируя с Н О , и общий баланс процесса не нарушается. Химизм фотолиза перекиси водорода, сенсибилизированного солями уранила, еще не получил детального разъяснения. Промежуточное образование радикалов ОН доказывается гидроксилированием бензола (ср. Штейн и Вейс [25]), при этом выделение кислорода ингибируется в большей или меньшей степени. Главные продукты реакции — фенол и дифенил, в меньпшх количествах образуются пирокатехин, высшие фенолы и смо пл. [c.381]

    Если восстановление проводить при температурах намного выше 1050° С, образующийся UF3 диспропорцио-нирует на UF4 и металлический уран. Ниже 900° С процент восстановленного UF4 ничтожен. UF3 образуется при нагревании хорошо перемешанной смеси UF4 и тонкого порошка металлического урана, полученного разложением гидрида урана нри температуре 1050°С в течение 2 ч в атмосфере аргона. Получаемый таким методом UF3 представляет собой плотный продукт черного цвета высокой чистоты. UF3 не очень гигроскопичен и медленно реагирует с влажным воздухом при комнатной температуре. Но при нагревании на воздухе до 900° С UF3 окисляется и количественно превращается в НзОз. Более эффективно это превращение может быть осуществлено обработкой LIF3 смесью паров воды и воздуха. Трифторид урана почти нерастворим в воде и медленно окисляется в холодной воде, образуя гелеобразный зеленый продукт. Он довольно стоек к действию кислот и нерастворим в оксалате аммония, но растворяется в кислотах, обладающих окислительными свойствами, с образованием растворов солей уранила. Холодные разбавленные кислоты лишь медленно взаилю-действуют с UF3, но он быстро растворяется в горячей HNO3. Выделение окислов азота в процессе протекания [c.113]

    Тетрафторид урана может быть получен либо осаждением его растворимыми фторидами из водных растворов четырехвалентного урана, либо сухим методом, путем взаимодействия соединений урана, в частности иОг, с фторирующими агентами при повышенных температурах. Обычно UF4 получают путем фторирования фтористым водородом UO2, приготовленной восстановлением высших окислов урана водородом. Тетрафторид урана различного изотопного состава получают восстановлением UFs водородом. Электролитическим восстановлением водных растворов иона уранила в присутствии HF можно непрерывно получать UF4. Тетрафторид урана осаждается из водных растворов в виде очень устойчивого UF4 2,5F[20. Предпринимавшиеся попытки полностью извлечь гидратную влагу из тетрафторида урана простым нагреванием в токе инертного газа обычно оказывались безуспешными. Тетрафторид, получаемый этим методом, почти всегда содержит небольшие количества окиси, образовавшейся при его гидролизе. Для получения чистого безводного UF4 из осажденного гидрата необходимо обработать его при 400—500° С газообразным фтористым водородом. Безводный IJF4 требуется в производстве металлического урана и гекса-фторида урана. Холодные концентрированные минеральные кислоты слабо воздействуют на тетрафторид урана, но он растворяется в кипящей H2SO4 и в сильных кислотах, к которым добавлена борная кислота, образующая с нонами фтора комплексы ВРГ. В образовавшихся растворах уран находится в форме ионов четырехвалентного урана. Тетрафторид урана образует ряд двойных солей с фторидами металлов. Эти соли очень устойчивы и могут быть получены из солевых расплавов, содержащих UF4, или осаждены из водных растворов. [c.114]

    Металличе ский уран может быть получен многими способа ми в большинстве случаев образуется пироф ор-ный порошок, обращение с которым сопряжено с трудностями. Ком пактный металл получается в результате высокотемпературного восстановления UF4 кальцием или магнием. Восстановление кальцием предпочтительнее, так как тепла, выделяющегося при взаимодействии кальция с зеленой солью UF/,, достаточно для сохранения металла в расплявленнолг состоянии и лучш его [c.192]


Смотреть страницы где упоминается термин Уранил соли, восстановление: [c.383]    [c.284]    [c.445]    [c.141]    [c.76]    [c.68]    [c.352]    [c.68]    [c.519]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.860 ]




ПОИСК





Смотрите так же термины и статьи:

Урана соли

Уранила соли



© 2025 chem21.info Реклама на сайте