Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо биологическая роль

    Биологическая роль кислорода в значительной мере определяется его способностью прочно связывать электроны. В состав пищи разнообразных организмов входят вещества, в молекулах которых электроны находятся на более высоком энергетическом уровне, чем в кислороде. Поэтому переход электронов от пищевых веществ (углеводы, жиры и иногда у некоторых бактерий различные неорганические вещества — сероводород, метан, даже железо) к кислороду может доставить организму энергию, необходимую [c.187]


    Железо играет исключительно важную биологическую роль, так как входит в состав гемоглобина и некоторых ферментов. Гемоглобин, связывая кислород, переносит его из легких к мышцам, где они передаются миоглобину, после чего, связывая СО2, переносит его в легкие. Нехватка железа в организме приводит к таким заболеваниям, как анемия и малокровие. [c.262]

    Применение и биологическая роль железа и его соединений [c.311]

    Биологическая роль андрогенов в мужском организме в основном связана с дифференцировкой и функционированием репродуктивной системы, причем в отличие от эстрогенов андрогенные гормоны уже в эмбриональном периоде оказывают существенное влияние на дифференцировку мужских половых желез, а также других тканей, определяя характер секреции гонадотропных гормонов у взрослых. Во взрослом организме андрогены регулируют развитие мужских вторичных половых признаков, сперматогенез в семенниках и т.д. Следует отметить, что андрогены оказывают значительное анаболическое действие, выражающееся в стимуляции синтеза белка во всех тканях, но в большей степени в мышцах. Для реализации анаболического эффекта андрогенов необходимым условием является присутствие соматотропина. Имеются данные, сввдетельствую-щие об участии андрогенов в регуляции биосинтеза макромолекул в женских репродуктивных органах, в частности синтеза мРИК в матке. [c.283]

    В ЖИВЫХ ОРГАНИЗМАХ. Биологическая роль сурьмы до сих пор не выяснена. Известно, что и сама сурьма, и ее соединения токсичны. Отравления возможны при производстве сурьмы и ее сплавов, поэтому технике безопасности, механизации производства, вентиляции уделяют здесь особое внимание. Однако, с другой стороны, сурьма обнаружена в растениях —0,0б мг на килограмм сухого веса, в организмах животных и человека. Этот элемент избира тельно концентрируется в печени, селезенке, щитовидной железе. Интересно, что в плазме крови в основном накапливается сурьма в степени окисления +5, а в эритроцитах — +3. [c.60]

    В патогенезе асбестоза определенное место занимает образо-вание так называемых асбестовых телец, представляющих собой частицу А. в капсуле из богатого железом белкового гелеподобного субстрата вероятнее всего, их биологическая роль заключается в изолировании агрессивной поверхности А. [c.383]

    Представлялось необходимым дать оценку качества полученной пресной воды в отношении содержания в ней микроэлементов иода и фтора, биологическая роль которых чрезвычайно важна. Биологическое значение иода, постоянной составной части организма, обусловлено в основном органически связанным иодом, входящим в состав гормона щитовидной железы — тироксина. [c.399]


    Аналог царского вещества, 10-окси-2-транс-деценовая кислота (160), содержится в больших количествах в маточном молочке (так называемом королевском желе ), вырабатываемом мандибулярными железами рабочих пчел. Биологическая роль этого вещества неясна, но оно, несомненно, как-то участвует в развитии личинок, обычной пищей которых наряду с пыльцой является маточное молочко. [c.121]

    Биологическая роль нуклеопротеидов тесно связана с процессами роста и морфогенеза. Особенно важной функцией нуклеопротеидов является, повидимому, синтез белка. Быстро растущие органы и ткани (эмбриональные ткани, опухоли), а также органы, в которых интенсивно происходят синтетические процессы (кроветворные органы, поджелудочная железа,. половые и другие железы), содержат особенно много нуклеопротеидов. Очень богаты нуклео-протеидами бактерии и другие микроорганизмы, а вирусы почти полностью построены из этих соединений. [c.42]

    Более тщательные исследования позволили, однако, установить весьма важное биологическое значение и этих элементов, по крайней мере многих их них. Хотя суточная потребность человеческого организма в микроэлементах нередко выражается всего лишь в тысячных и миллионных долях миллиграмма, тем не менее при полном исключении их из пищи возникает ряд заболеваний и расстройств обмена веществ. Не говоря уже о железе и йоде, значение которых для нормальной жизнедеятельности организма человека и животных было показано сравнительно давно, несомненно, что важную биологическую роль играют и такие элементы, как, например, Си, 2п и Со. Эти металлы входят, в частности, в состав простетических групп некоторых ферментов (карбоангидраза, например, содержит 2п, тирозиназа — Си), а иногда и витаминов (витамин В12 содержит Со). [c.391]

    Биологическая роль порфиринов значительно шире их участия в построении систем гемоглобина и хлорофилла. Установлено, что без них живые организмы не могли бы приспособиться при переходе от ранней восстановительной к современной окислительной атмосфере. Есть основания полагать, что абиогенный синтез порфирина и далее гема и хлорофилла осуществлялся конденсацией янтарной кислоты (возникшей из уксусной кислоты) и глицина в а-амино-Р-кетоадипиновую кислоту, которая после декарбоксилирования превращалась в б-аминолевулиновую кислоту две ее молекулы, взаимно конденсируясь, образовали пиррольное ядро. Серия последующих процессов окисления и конденсации привела к тетра-пиррольной порфириновой системе. Далее синтез гема и хлорофилла осуществлялся почти тождественной, совпадающей последовательностью реакций, разветвившихся на стадии образования комплексов железа и магния  [c.546]

    Для поддержания жизни, как показано в настоящее время, существенное значение имеют около 20 элементов, хотя живая ткань часто содержит в следовых количествах все элементы, находящиеся в окружающей среде. Основные элементы живых систем — это водород, углерод, азот и кислород (2—60 ат. %). Установлено, что из всех элементов, присутствующих в следовых количествах (0,02—0,1 ат. %), фосфор, сера, хлор, натрий, калий, магний и кальций необходимы для поддержания процессов жизнедеятельности. Некоторые из элементов, присутствующих в сверхмалых количествах (менее 0,001 ат. %), также относятся к числу необходимых. Это марганец, железо и медь. Весьма вероятно, что ванадий, кобальт, молибден, бор и кремний также имеют общее биологическое значение, однако показать, что тот или иной элемент, присутствующий в сверхмалых количествах, биологически необходим, часто весьма трудно. В отдельных случаях биологическая роль элемента для растений и животных может быть установлена по тем последствиям, которые вызывает его отсутствие в почве. Так, отсутствие меди в почве некоторых районов Австралии вызвало нарушения в нервной системе овец и привело к заболеванию их анемией и к выпадению шерсти. Утверждалось также, что недостаток в почве бора приводит к аномалиям в развитии свеклы и сельдерея и к ухудшению качества [c.7]

    НО также и потому, что в гемопротеинах имеется необычайно тонкое равновесие между состояниями с максимальной и минимальной спиновой мультиплетностью. Можно предположить, что изменение спинового состояния железа определяется стереохимическими факторами. Изменение спинового состояния при переносе электрона между уровнями eg и t2g сопровождается изменением ионного радиуса катиона железа и изменением длин связей металл — лиганд. Как показано на примере простых неорганических комплексов [58], ионный радиус Fe(II) или Ре(И1) увеличивается примерно на 20% при переходе от низкоспинового состояния к высокоспиновому (табл. 3). Стереохимическое значение данного спинового состояния железопорфиринового комплекса, следовательно, заключается в том, что расположение катиона железа относительно плоскости координируемых атомов азота пиррольных колец порфирина зависит от длин связей железо — порфирин, изменяющихся по мере того, как меняется ионный радиус металла и взаимодействие металл-лиганд. Кроме того, поскольку связывание кислорода сопровождается изменением спинового состояния [105] и положение атома железа относительно плоскости порфирина должно коррелировать во времени и пространстве со связыванием молекулы кислорода, предполагается [103, 104], что изменение стереохимии железо-порфирина вызывает конформационные изменения, ответственные за кооперативное связывание кислорода. В этом и заключается биологическая роль электронной конфигурации атома железа в физиологической функции гемоглобина. [c.40]


    БИОЛОГИЧЕСКАЯ РОЛЬ МНОГОЯДЕРНЫХ КОМПЛЕКСОВ ЖЕЛЕЗА(1П) [c.352]

    Биологическая роль марганца в жизни растений и животных весьма значительна. Для животных организмов присутствие марганца необходимо. Он усиливает рост молодых организмов, влияет на кроветворение (в сочетании с железом, медью и кобальтом). [c.14]

    Основная биологическая роль щитовидной железы заключается в связывании иода в гормон тироксин, регулирующий обмен жиров, углеводов и белков в организме. Поступающий в тело животного неорганический иод аккумулируется преимущественно в щитовидной железе, где его концентрация в тысячи раз больше, чем в других органах. В ряде работ, основные из которых выполнены Майковым, радиоактивный иод был применен для изучения деятельности щитовидной железы, происходящих в ней химических процессов и дальнейшей судьбы иода в организме. Были также изучены патологические нарушения функции щитовидной железы и терапевтическое действие ряда лекарственных веществ. В ранних работах применяли преимущественно более легко получаемый короткоживущий J который позже был заменен изотопом с полупериодом 8,14 дней, получаемым в достаточных количествах при помощи урановых реакторов. Исследования на живых организмах могут вестись без затруднения, так как жесткое 8-излучение обоих изотопов легко проходит сквозь ткани и регистрируется счетчиком, расположенным вблизи соответствующего участка шеи человека или опытного животного. [c.508]

    Биологическая роль макроэлементов. Кальций в организме человека составляет около 40 % общего количества всех минеральных веществ. Он входит в состав костей и зубов, придавая им прочность, депонируется в мембранах ретикулума скелетных мышц, участвует в запуске сокращения мышц, передаче нервных импульсов, регуляции проницаемости мембран клеток, в процессах свертывания крови, активирует многие обменные процессы, в том числе распад АТФ, способствует усвоению организмом железа и витамина В,2- Недостаточное поступление кальция в ткани организма приводит к выходу его из костей, что вызывает снижение их прочности (остеопороз), а также нарушение функции нервной системы, кровообращения, в том числе и мышечной деятельности. [c.70]

    Биологическая роль микроэлементов. Железо играет очень важную роль в процессах аэробного энергообразования в организме. Оно входит в состав белков гемоглобина, миоглобина, которые осуществляют транспорт Oj и Og в организме, а также в состав цитохромов — компонентов дыхательной цепи, на которой протекают процессы биологического окисления и образования АТФ. Недостаточность железа в организме приводит к нарушению образования гемоглобина и снижению его концентрации в крови. Это может привести к развитию железодефицитной анемии, снижению кислородной емкости крови и резкому снижению физической работоспособности. [c.71]

    Какова биологическая роль гормонов щитовидной железы  [c.150]

    Биологическая роль с -элементов семейства железа. [c.280]

    По сравнению с железом и кобальтом никель играет менее важную биологическую роль, что, вероятно, связано с уменьшением химической активности элементов в триаде железа при переходе от Fe к Ni. [c.200]

    Биологическая роль крахмала состоит в том, что он является запасным питательным веществом в растениях и когда возникает потребность в энергии и источнике углерода, крахмал высвобождается из запасных гранул и гидролизуется ферментами - амилазами. Они расщепляют связи 1 ->4 в амилозе и амилопектине в различных участках, что приводит к образованию смеси глюкозы и мальтозы. В результате действия амилаз происходит полное расщепление амилозы, но амилопектин расщепляется лишь частично, и для разрыва связей 1—>6 необходимо действие специальных ферментов -мальтаз, которые разрывают связи в крахмале в точках ветвления амилопектина. Благодаря комбинированному действию амилаз и мальтаз крахмал полностью гидролизуется до a-D-глюкoзы, которая затем активно включается в различные метаболические реакции. В противоположность целлюлозе, крахмал хорошо усваивается в организме животных и человека, так как расщепляющие его ферменты содержатся в слюне и поджелудочной железе. [c.69]

    Биологическая роль. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь простетическими группами ферментов ряда других сложных белков —флавопротеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы Ь- и О-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении. В каталитическом цикле изоаллоксазиновый остаток ФАД или ФМН подвергается обратимому восстановлению с присоединением электронов и атомов водорода к и ФМН и ФАД прочно связываются с белковым компонентом, иногда даже ковалентно, как, например, в молекуле сукцинатдегидрогеназы. [c.224]

    Ведущую роль в регуляции синтеза эстрогенов и прогестерона играют гонадотропные гормоны гипофиза (фоллитропин и лютропин), которые опосредованно, через рецепторы клеток яичника и систему аденилатциклаза—цАМФ и, вероятнее всего, путем синтеза специфического белка, контролируют синтез гормонов. Основная биологическая роль эстрогенов и прогестерона, синтез которых начинается после наступления половой зрелости, заключается в обеспечении репродуктивной функции организма женщины. В этот период они вызывают развитие вторичных половых признаков и создают оптимальные условия, обеспечивающие возможность оплодотворения яйцеклетки после овуляции. Прогестерон выполняет в организме ряд специфических функций подготавливает слизистую оболочку матки к успешной имплантации яйцеклетки в случае ее оплодотворения, а при наступлении беременности основная роль—сохранение беременности оказывает тормозящее влияние на овуляцию и стимулирует развитие ткани молочной железы. Эстрогены оказывают анаболическое действие на организм, стимулируя синтез белка. [c.281]

    Еще сравнительно недавно протеиназы традиционно связывали только с процессами переваривания. В настоящее время появляется все больше данных о более широкой биологической роли протеолитических ферментов органов и тканей в регуляции ряда вне- и внутриклеточных процессов. Некоторые протеиназы выполняют защитную функцию (свертывание крови, система комплемента, лизис клеток), другие генерируют гормоны, токсины, вазоактивные агенты (ангиотензин, кинины). Ряд протеиназ регулирует образование пищеварительных ферментов, взаимодействие между клетками и клеточными поверхностями, процессы фертилизации (хитин-синтетаза) и дифференциации. Регуляция в большинстве случаев предусматривает превращение неактивного предшественника в активный белок путем отщепления ограниченного числа пептидов. Этот процесс, впервые описанный К. Линдерстрем-Лангом еще в 50-е годы, в последнее время называют ограниченным протеолизом. Значение его очень важно для понимания сущности биологического синтеза в клетках неактивных пре-и пробелков. Кроме того, этот процесс нашел широкое практическое применение в лабораториях и промышленности. В регуляции действия протеолитических ферментов участвуют также ингибиторы протеиназ белковой природы, открытые не только в поджелудочной железе, но и в плазме крови, курином яйце и т.д. [c.423]

    Биологическая роль гемоглобина заключается в осуществлении процесса дыхания — переносе кислорода в животном организме от легких к тканям. Гемоглобин, в котором гем является активным центром, образует с кислородом нестойкое молекулярное соединение— оксигемоглобин, легко диссоциирующий с выделением кислорода. Важно отметить, что железо гема связывает кислород только в присутствии глобина в течение всего процесса железо остается двухвалентным  [c.548]

    Результаты детальных исследований структуры ряда многоядерных комплексов, которые мы обсуждали в предыдущей главе, можно сопоставить с биологической ролью многоядерных систем, образуемых Fe(III) (гл. 20). Фосвитин является основным пищевым компонентом яичного желтка, причем подавление поглощения железа этим белком связано с его устойчивостью, к действию протеолити-ческих ферментов [106] и с его способностью связывать около 50 молей железа на 1 моль белка с образованием многоядерных структур [97]. Диетологические исследования показали, что входящие в состав пищи инозитгексафосфорная кислота (фитовая кислота) и фосфаты сильно подавляют усвоение железа [1 ], вероятно, путем образования нерастворимого Ре(1П) в виде его фосфатов. Связывание железа фосфитином — прежде всего при участии фосфатных групп серинфосфатных боковых цепей — не приводит к осаждению железа, но все же переводит железо в форму, не доступную для поглощения, вследствие его связывания в макромолекулярный комплекс. Однако данные об относительной роли различных компонентов пищи, являющихся потенциальными хелатирующими агентами в отношении железа, весьма немногочисленны. [c.369]

    Простетической группой гемоглобина и других подобных белков является гем, представляющий собой комплекс порфирина с железом. Интенсивное и тщательное изучение гемоглобина было обусловлено, с одной стороны, его биологической ролью в качестве переносчика кислорода, с другой — тем, что он очень легко может быть получен в кристаллическом виде и имеет интенсивную окраску, дающую возможность проводить колориметрические определения. Очень важное значение имеет и то обстоятельство, что изменения в нативном состоянии гемоглобина могут быть легко уловлены по изменению его окраски и спектра поглощения. В нашу задачу не входит рассмотрение структуры гема и различных порфиринов дальнейшее изложение будет посвящено поэтому только тем вопросам, которые касаются структуры и свойств белка, входящего в состав гемоглобина. [c.242]

    Биологическая роль прогестерона выяснена достаточно полно. В яичнике женщины после созревания и разрыва фолликула образуется ткань, которая из-за наличия в ней большого количества желтого пигмента каротина получила название желтого тела ( корпус лутеум ). Основные функции желтого тела заключаются в подготовке и сохранении беременности. Как было установлено еще в начале нашего столетия, удаление желтого тела приводит к прерыванию беременности, откуда родилось предположение, что оно является эндокринной железой и вырабатывает гормоны. Действительно, изменения, вызываемые беременностью, можно восстановить введением экстрактов желтого тела. Все это позволило исследователям выделить из желтого тела гормон прогестерон (1934 г.), хотя задача оказалась исключительно сложной в силу лабильности этого вещества. Сейчас прогестерон получают как путем изолирования из яичников животных, так и на основе химических-и микробиологических методов из других стероидных соединений (холестерина, диосгенина и т. п.). [c.85]

    Определив функцию сидерохромов как переносчиков железа, целесообразно рассмотреть в свете их признанной биологической роли химическую структуру и свойства наиболее типичных соединений— фенолята железа(П1) [железо(III)энтеробактин (1а)] и гидроксамата железа(III) [феррихром (Va)]. [c.214]

    Ципк, введенный в организм, распределяется в нем и накапливается в печени и поджелудочной железе. Выводятся соли цинка главным образом через желудочно-кишечный тракт, в меньшей степени — мочой. Цинк поступает в организм с пищей. Является широко распространенным элементом как в неживой природе, так и в растительных и животных организмах. В жизни растений и животных играет определенную биологическую роль. Содержание цинка в органах человека, по данным А. О. Вой-нара, приведено в табл. 13. [c.348]

    Все основные биохимические процессы, связанные с Ж1)зне-де.чтельностью любого организма, происходят в клетке. Ткани, выреза1 кые из организма, продолжают некоторое время дышать поглощать кислород и выделять углекислоту. Отсюда н возникло понятие о клеточном и тканевом дыхании. Биологическая роль дыхания заключается в извлечеыпн энергии за счет окисления и распада органических веществ, которая используется клетками для выполнения тех или иных видов физиологической работы (непрерывное обновление организма, рост и движение клеток и тканей, работа сердца, сокращение мышц, секреция желез и т. д.). Следовательно, химизм аэробного клеточного дыхания обусловлен биологическими окислительно-восстановительными процессами, протекающими в живых клетках организма. [c.354]

    В начале XX в. считалось, что для нормального существования живых организмов необходимо регулярное снабжение их так называемыми органогенами, к которым относили атомы углерода, водорода, кислорода, азота и зольные элементы фосфор, калий, кальций, магний, натрий, сера, железо и йод. Остальные химические элементы, в тех случаях когда они обнаруживались в золе, считали случайными, засоряющими организм, бес-1юлезными для него, и попадающими с водою или продуктами питания. Однако с течением времени в связи с разработкой и применением новых методов анализа, позволяющих обнаружить и количественно определить ничтожно малые количества элементов, накоплялось все больше данных о наличии и важной биологической роли в организмах различных минеральных веществ. Оказалось, что круг биогенных элементов не ограничивается теми, которые встречаются в организмах в значительных количествах. Многие элементы, обнаруживаемые в минимальных количествах, как было выяснено, играют существенную роль, входя в состав таких важных для жизнедеятельности организмов веществ, как ферменты, гормоны и др. Вместе с этим было показано, что недостаток тех или иных минеральных веществ в пище вызывает глубокие расстройства в жизнедеятельности животных, в развитии растений. [c.202]

    Сидерамины очень прочно связывают трехвалентное железо, которое после восстановления легко реализуется. Их биологическая роль в первую очередь связана с транспортом железа из внешнего раствора в клетку, а также включением его в молекулу тетрапиррола и Ре-белки негеминовой природы. [c.232]


Смотреть страницы где упоминается термин Железо биологическая роль: [c.110]    [c.1018]    [c.237]    [c.611]    [c.333]    [c.229]    [c.288]    [c.11]    [c.197]    [c.197]   
Общая химия Биофизическая химия изд 4 (2003) -- [ c.280 ]




ПОИСК





Смотрите так же термины и статьи:

Биологическая роль d-элементов семейства железа. Применение их соединений в медицине

Биологическая роль многоядерных комплексов железа(Ш)



© 2024 chem21.info Реклама на сайте