Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород биологическая роль

    Роль кислорода в природе и его применение в технике. При участии кислорода совершается один из важнейших жизненных процессов—дыхание. Окисление кислородом углеводов, жиров и белков служит источником энергии живых организмов. В организме человека содержание кислорода составляет 61% от массы тела. В виде различных соединений он входит в состав всех органов, тканей, биологических жидкостей. Человек вдыхает в сутки 20—30 м воздуха. [c.199]


    Для поддержания жизни, как показано в настоящее время, существенное значение имеют около 20 элементов, хотя живая ткань часто содержит в следовых количествах все элементы, находящиеся в окружающей среде. Основные элементы живых систем — это водород, углерод, азот и кислород (2—60 ат. %). Установлено, что из всех элементов, присутствующих в следовых количествах (0,02—0,1 ат. %), фосфор, сера, хлор, натрий, калий, магний и кальций необходимы для поддержания процессов жизнедеятельности. Некоторые из элементов, присутствующих в сверхмалых количествах (менее 0,001 ат. %), также относятся к числу необходимых. Это марганец, железо и медь. Весьма вероятно, что ванадий, кобальт, молибден, бор и кремний также имеют общее биологическое значение, однако показать, что тот или иной элемент, присутствующий в сверхмалых количествах, биологически необходим, часто весьма трудно. В отдельных случаях биологическая роль элемента для растений и животных может быть установлена по тем последствиям, которые вызывает его отсутствие в почве. Так, отсутствие меди в почве некоторых районов Австралии вызвало нарушения в нервной системе овец и привело к заболеванию их анемией и к выпадению шерсти. Утверждалось также, что недостаток в почве бора приводит к аномалиям в развитии свеклы и сельдерея и к ухудшению качества [c.7]

    Все основные биохимические процессы, связанные с Ж1)зне-де.чтельностью любого организма, происходят в клетке. Ткани, выреза1 кые из организма, продолжают некоторое время дышать поглощать кислород и выделять углекислоту. Отсюда н возникло понятие о клеточном и тканевом дыхании. Биологическая роль дыхания заключается в извлечеыпн энергии за счет окисления и распада органических веществ, которая используется клетками для выполнения тех или иных видов физиологической работы (непрерывное обновление организма, рост и движение клеток и тканей, работа сердца, сокращение мышц, секреция желез и т. д.). Следовательно, химизм аэробного клеточного дыхания обусловлен биологическими окислительно-восстановительными процессами, протекающими в живых клетках организма. [c.354]

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]


    Железо играет исключительно важную биологическую роль, так как входит в состав гемоглобина и некоторых ферментов. Гемоглобин, связывая кислород, переносит его из легких к мышцам, где они передаются миоглобину, после чего, связывая СО2, переносит его в легкие. Нехватка железа в организме приводит к таким заболеваниям, как анемия и малокровие. [c.262]

    При гликолизе высвобождается только небольшая часть всей энергии, заключенной в молекуле глюкозы. Общее изменение стандартной свободной энергии при полном окислении глюкозы до СО2 и HjO составляет — 686 ккал/моль (табл. 14-3). Следовательно, выход свободной энергии при гликолитическом расщеплении глюкозы на две молекулы лактата (AG° = — 47,0 ккал/моль) равен всего лишь (47/686)-100 = 6,9% того количества энергии, которое может высвободиться при полном окислении глюкозы до СО2 и Н2О. Большая часть биологически доступной энергии, заключенной в молекуле глюкозы, сохраняется в продуктах гликолиза-двух молекулах лактата. Она может высвободиться только в том случае, если продукты гликолиза подвергнутся полному окислению до СО2 и HjO молекулярным кислородом, играющим роль акцептора электронов (об этом мы будем подробно говорить в следующей главе). И тем не менее этот [c.441]

    Элементы неметаллического типа — углерод, азот, кислород — имеют фундаментальное значение для всего хода естественного развития химических систем, но роль таких типичных неметаллов, как галогены, также существенна. Наиболее резко выражен неметаллический характер у фтора и поэтому мы опишем его сравнительно подробно, хотя биологическая роль хлора и иода представляется более важной. [c.146]

    Биологическая роль кислорода в значительной мере определяется его способностью прочно связывать электроны. В состав пищи разнообразных организмов входят вещества, в молекулах которых электроны находятся на более высоком энергетическом уровне, чем в кислороде. Поэтому переход электронов от пищевых веществ (углеводы, жиры и иногда у некоторых бактерий различные неорганические вещества — сероводород, метан, даже железо) к кислороду может доставить организму энергию, необходимую [c.187]

    Кислород входит в состав ДНК. Его биологическая роль в значительной степени определяется способностью прочно связывать электроны. В состав пищи организмов входят вещества, в молекулах которых электроны находятся на более высоком энергетическом уровне, чем в кислороде. Поэтому переход электронов от пищевых веществ к кислороду доставляет организму энергию, необходимую для движения, химических синтезов и др. Кислород в виде О2 нетоксичен. Токсичен озон. При концентрации его в воздухе больше чем 1 10 он сильно раздражает слизистые оболочки и представляет опасность для жизни. [c.365]

    Биологическая роль гемоглобина заключается в осуществлении процесса дыхания — переносе кислород а в животном организме от легких к тканям. Гемоглобин, в котором гем является активным центром, образует с кислородом нестойкое молекулярное соединение — [c.544]

    НО также и потому, что в гемопротеинах имеется необычайно тонкое равновесие между состояниями с максимальной и минимальной спиновой мультиплетностью. Можно предположить, что изменение спинового состояния железа определяется стереохимическими факторами. Изменение спинового состояния при переносе электрона между уровнями eg и t2g сопровождается изменением ионного радиуса катиона железа и изменением длин связей металл — лиганд. Как показано на примере простых неорганических комплексов [58], ионный радиус Fe(II) или Ре(И1) увеличивается примерно на 20% при переходе от низкоспинового состояния к высокоспиновому (табл. 3). Стереохимическое значение данного спинового состояния железопорфиринового комплекса, следовательно, заключается в том, что расположение катиона железа относительно плоскости координируемых атомов азота пиррольных колец порфирина зависит от длин связей железо — порфирин, изменяющихся по мере того, как меняется ионный радиус металла и взаимодействие металл-лиганд. Кроме того, поскольку связывание кислорода сопровождается изменением спинового состояния [105] и положение атома железа относительно плоскости порфирина должно коррелировать во времени и пространстве со связыванием молекулы кислорода, предполагается [103, 104], что изменение стереохимии железо-порфирина вызывает конформационные изменения, ответственные за кооперативное связывание кислорода. В этом и заключается биологическая роль электронной конфигурации атома железа в физиологической функции гемоглобина. [c.40]

    Известно, что токоферолы выполняют в организме две главные метаболические функции. Во-первых, они являются наиболее активными и, возможно, главными природными жирорастворимыми антиоксидантами разрушают наиболее реактивные формы кислорода и соответственно предохраняют от окисления полиненасыщенные жирные кислоты. Во-вторых, токоферолы играют специфическую, пока еще не полностью раскрытую роль в обмене селена. Селен, как известно, является интегральной частью глутатионпероксидазы-фермента, обеспечивающего защиту мембран от разрушающего действия пероксидных радикалов. Биологическая роль витамина Е сводится, таким образом, к предотвращению аутоокисления липидов биомембран и возможному снижению потребности в глутатиониероксидазе, необходимой для разрушения образующихся в клетке перекисей. Участие токоферолов в механизме транспорта электронов и протонов, как и в регуляции процесса транскрипции генов, и их роль в метаболизме убихинонов пока недостаточны выяснены. [c.220]


    Каталитические свойства ионов металлов в реакциях молекулярного кислорода играют особо важную роль в биологических системах. Именно каталитический эффект позволяет объяснить окисление ионов Сг + и Ре + в воде, насыщенной кислородом (в воде, свободной от кислорода, они устойчивы). [c.478]

    Реальные химические и металлургические реакции совершаются с участием растворов. Расплавленные чугун, сталь, медь, другие цветные металлы представляют собой жидкие растворы различных элементов, преимущественно неметаллов (углерод, кислород, сера и др.) в основном металле. Расплавленные шлаки доменных и сталеплавильных печей являются растворами оксидов. Промежуточный продукт при выплавке меди (штейн) есть раствор сульфидов меди и железа. Подавляющее большинство промышленных сплавов содержит в своем составе твердые растворы. Сталь — твердый раствор углерода в железе. Предшественница железа в истории техники — бронза есть раствор олова и меди. Водные растворы солей, кислот и оснований широко используются в гидрометаллургии при извлечении цветных металлов из руд. Значение водных растворов выходит за рамки техники вследствие их исключительной роли во всех биологических процессах. [c.96]

    На роль пероксидов в биологических процессах на примере биологического окисления А.Н. Бах указал еще в 1897 г., когда написал, что в животном организме активирование кислорода может происходить при посредстве перекисей, которые являются постоянным фактором всякого процесса медленного окисления, какова бы ни бьша природа окисляющего тела . [c.30]

    Простетической группой гемоглобина и других подобных белков является гем, представляющий собой комплекс порфирина с железом. Интенсивное и тщательное изучение гемоглобина было обусловлено, с одной стороны, его биологической ролью в качестве переносчика кислорода, с другой — тем, что он очень легко может быть получен в кристаллическом виде и имеет интенсивную окраску, дающую возможность проводить колориметрические определения. Очень важное значение имеет и то обстоятельство, что изменения в нативном состоянии гемоглобина могут быть легко уловлены по изменению его окраски и спектра поглощения. В нашу задачу не входит рассмотрение структуры гема и различных порфиринов дальнейшее изложение будет посвящено поэтому только тем вопросам, которые касаются структуры и свойств белка, входящего в состав гемоглобина. [c.242]

    Около ста лет назад была высказана мысль, что биологические реакции, протекающие при усвоении пищи, напоминают сгорание органических молекул. Действительно, конечным результатом как биологического окисления, так и сгорания являются одни и те же процессы образуются углекислый газ, вода и энергия, а также потребляется кислород. Однако, в то время как при обычном сгорании органических соединений, например глюкозы, выделяется очень немного полезной энергии, биологическое окисление глюкозы идет в несколько стадий, а энергию, которая при этом освобождается, организм запасает в виде так называемых макроэргических соединений. Ведущую роль среди таких соединений играет аденозинтрифосфат, широко известный под названием АТФ. В настоящем разделе мы рассмотрим наиболее важную [c.186]

    Иа ааре существования органической химии предметом ее изучения служили соединения, построенные только из углерода, водорода, азота и кислорода. Лишь немногие химики-органики, нередко объединявшиеся в отдельную группу, изучали соединения, содержаи ие неорганические элементы . По мере развития теоретической органической химии все яснее вырисовывалась роль гетероатомов в биологических процессах кроме того, число химиков-органиков значительно возросло. Вот почему в литературе стало появляться все больше и больше работ, которые нельзя уже было строго разграничить на органические и неорганические. [c.326]

    Расстояние между атомами кислорода экваториальных ОН-групп составляет 0,485 нм, и оно практически точно соответствует положению второго максимума радиальной функции распределения жидкой воды (-0,49 нм). Такое стерическое соответствие и позволило прийти к заключению, что молекулы многих сахаридов, имеющих достаточное число еОН-групп, могут точно размещаться в квазикристаллической водной матрице. При этом водородные связи вода-вода замещаются связями сахарид-вода. В дополнение к этому необходимо привести чрезвычайно интересный факт, заключающийся в том, что критическое расстояние кислород-кислород -0,49 нм является характерным для большинства биологических молекул [29]. Стерическая комплементарность молекул углеводов (и молекул других биологически важных веществ) и трехмерной упорядоченности жидкой воды, по-видимому, дает возможность этому растворителю играть столь важную роль в жизненно важных процессах. [c.78]

    Кислород — самый распространенный на Земле элемент (46,67о)- В воздухе находится в виде молекул О2. Биологическая роль его огромна. Для технических целей кислород получают из жидкого воздуха (разгонкой) или КЗ воды (электролизом), в лабораториях — разложением КМПО4 или КСЮз. Кислород широко используется для интенсификации многих технологических процессов, сварочных работ, получения взрывчатых веществ (жидким кислородом, например, пропитывают угольный порошок) и других целей. Аллотропические видоизменения кислорода— озон Оз и атомный кислород О — еще более сильные окислители, чем молекулярный О2. Озон и атомный кислород неустойчивы, образование их происходит эндотермически. Термодинамическая характеристика О и О2 дана в табл. 1 у озона ДЯгоа =143 кДж/моль, ДС з кДж/моль и 5 298 = 238 Дж/(моль-К). О строении молекул О2 и Оз см. гл. III, 3 и 8. [c.383]

    Лишь немногие дегидрогеназы способны передавать водород непосредственно кислороду воздуха. Роль посредника выполняет ци-тохромная система, с помощью которой и завершается биологическое окисление. [c.117]

    Биологическая роль. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь простетическими группами ферментов ряда других сложных белков —флавопротеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы Ь- и О-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении. В каталитическом цикле изоаллоксазиновый остаток ФАД или ФМН подвергается обратимому восстановлению с присоединением электронов и атомов водорода к и ФМН и ФАД прочно связываются с белковым компонентом, иногда даже ковалентно, как, например, в молекуле сукцинатдегидрогеназы. [c.224]

    Хотя мы пока еще не знаем точно, какова биологическая роль фотодыхания, ясно, что оно заслуживает серьезного внимания, потому что в умеренной зоне оно снижает продуктивность Сз-растений, т. е. скорость образования растительной биомассы. В жаркий безветренный день в посевах Сз-растений концентрация СО2 в воздухе над растениями может понизиться до 0,005% (нормальный уровень-0,03%) из-за быстрого использования СО2 в процессе фотосинтеза. В результате этого понижается и отношение СО2/О2 в воздухе над растениями, а значит, кислород начинает более успешно конкурировать с СО2 в рибулозодифосфат-карбоксилазной реакции, так что фиксация СО2 замедляется, а разорительный процесс фотодыхания, напротив, усиливается. Фотодыхание может на 50% снизить реальное образование биомассы у Сз-растений. [c.711]

    Биологические функции биометаллов и их координационных соединений с биолигандами, другими словами, роль их в живых организмах давно интенсивно изучаются. И тем не менее на сегодня механизмы биологического действия ионов щелочных и щелочноземельных металлов окончательно не выяснены. Одной из важнейших проблем является распределение Ка+ и К+ между внутриклеточным и внеклеточным пространством. Наблюдается избыток во внеклеточном пространстве, К+ — во внутриклеточном. Эти ионы ответственны за передачу нервных импульсов. Мо2+ изменяет структуру РНК Са + играет особую роль в процессах сокращения и расслабления мышц. Ионы железа, меди н ванадия в биокомплексах присоединяют молекулярный кислород и выполняют, таким образом, функцию накопления, хранения и транспорта молекулярного кислорода, необходимого для реализации многих процессов с выделением энергии, а также для синтеза ряда веществ в организме. [c.568]

    Биологическая роль гемоглобина заключается в осуществлении процесса дыхания — переносе кислорода в животном организме от легких к тканям. Гемоглобин, в котором гем является активным центром, образует с кислородом нестойкое молекулярное соединение— оксигемоглобин, легко диссоциирующий с выделением кислорода. Важно отметить, что железо гема связывает кислород только в присутствии глобина в течение всего процесса железо остается двухвалентным  [c.548]

    Биологические системы состоят главным образом из водорода, кислорода, углерода и азота. Действительно, более 99% атомов из числа необходимых биологическим клеткам приходится на долю этих четырех элементов. Тем не менее, как известно, биологические системы нуждаются во многих других элементах. На рис. 23.5 показаны необходимые для биологических систем элементы. К их числу относятся шесть переходных металлов-железо, медь, цинк, марганец, кобальт и молибден. Роль этих элементов в биологических системах обусловлена главным образом их способностью образовывать комплексы с разнообразными электронно-донорньши группами. Многие ферменты, выполняющие в организме роль катализаторов, функционируют благодаря наличию в них ионов металлов. Принцип действия ферментов будет рассмотрен подробнее в гл. 25. [c.375]

    Миоглобин — хромопротеид, содержащийся в мышцах. Биологическая роль его состоит в обеспечении кислородом мышечных волокон. По химической природе подобен гемоглобину, одаако строение его проще. Простетической группой миоглобина, как и у гемоглобина, является гем. Белковая часть миоглобина состоит из одной полипептид-вой цепи таким образом, молекула миоглобина содержит одну молекулу гема. Мол. масса миоглобина 17000. [c.23]

    Биологическая роль таннида в живом растении ио шостью не выяснена. В некоторых случаях, например в дубильных орешках, таннид отлагается в патологических образованиях. С другой стороны, многие растения вырабатывают та иниды при своем нормальном росте. Вообще дерево образует таннид предпочтительнее в коре, чем в древесине, но некоторые породы (например, красное дерево, квебрахо) дают больше таннида в древесине, чем в коре. Танниды помогают предохранять дерево от повреждений насекомыми и грибами. В связи с этим интересно отметить, что в лесах, состоящих из пород красного дерева, почти нет птиц, ввиду отсутствия насекомых. Танниды и их предшественники могут служить переносчиками кислорода в окислительной системе растения. [c.526]

    Из 90 элементов периодической системы Д. И. Менделеева, находящихся в естественных условиях на Земле, лишь восемнадцать элементов входят в состав биологических систем. Шесть элементов — углерод, водород, азот, кислород, фосфор, сера — играют исключительную роль в биосистемах они входят в состав белков и нуклеиновых кислот и составляют основу жизни на земле. Среди них легчайшие атомы, у которых наиболее распространенными и устойчивыми степенями окисления являются 1 (Н) 2 (О) 3 (Ы) 4 (С) 5 (Р) 6 (5) и которые отвечают наиболее стабильным электронным конфигурациям. Существенное значение для жизнедеятельности организмов имеют 12 следующих элемен- [c.561]

    Микросомальное окисление не сопровождается синтезом АТФ, его биологическая роль заключается в следующем. Во-первых, за счет микросомального окисления осуществляется включение атомов кислорода в синтезируемые вещества (например, при синтезе белка коллагена, гормонов надпочечников). Во-вторых, микросомальное окисление участвует в обезвреживании различных токсичных соединений, поступающих в организм извне или образующихся в процессе метаболизма. Включение кислорода в молекулу яда уменьщает его токсичность и делает его более водорастворимым, что облегчает его выведение из организма почками. [c.42]

    В начале XX в. считалось, что для нормального существования живых организмов необходимо регулярное снабжение их так называемыми органогенами, к которым относили атомы углерода, водорода, кислорода, азота и зольные элементы фосфор, калий, кальций, магний, натрий, сера, железо и йод. Остальные химические элементы, в тех случаях когда они обнаруживались в золе, считали случайными, засоряющими организм, бес-1юлезными для него, и попадающими с водою или продуктами питания. Однако с течением времени в связи с разработкой и применением новых методов анализа, позволяющих обнаружить и количественно определить ничтожно малые количества элементов, накоплялось все больше данных о наличии и важной биологической роли в организмах различных минеральных веществ. Оказалось, что круг биогенных элементов не ограничивается теми, которые встречаются в организмах в значительных количествах. Многие элементы, обнаруживаемые в минимальных количествах, как было выяснено, играют существенную роль, входя в состав таких важных для жизнедеятельности организмов веществ, как ферменты, гормоны и др. Вместе с этим было показано, что недостаток тех или иных минеральных веществ в пище вызывает глубокие расстройства в жизнедеятельности животных, в развитии растений. [c.202]

    Комплексы переходных металлов с О2 (дикислородом) интенсивно изучаются [566]. Столь пристальное внимание к этим комплексам объясняется важной биологической ролью кислород-связывающих металлопротеинов, отвечающих за транспорт и восстановление кислорода, и их способностью оксигенировать углеводороды. Наиболее важными биологическими носителями кислорода являются гемопротеиды (железопорфирины) [567] — гемоглобины и миоглобины (высших позвоночных), железопорфирины, не содержащие гема, — гемэритрин (морских червей) [568], а также медьсодержащие белки — гемоцианин (моллюсков и членистоногих) [569]. Мультиметаллопротеид (2 атома Fe и 2 атома Си) цитохром-с-оксидаза [570] восстанавливает кислород до воды, обеспечивая тем самым жизненно важное звено в первичном метаболизме кислорода. Хорошо известен оксигенирующий фермент — гемопротеид семейства монооксигеназы — цитохром Р-450 [571]. В настоящее время получены синтетиче- [c.199]

    Большую роль при С.п. играют внеш. факторы-т-ра, свет, ионизирующее излучение, мех. воздействие, химически и биологически агрессивные среды. В зависимости от того, какой из факторов преобладает, различают термическое С.п., световое, или фотостарение, радиационное С.п., мех. и хим. деструкцию, биологическое С. п. Особо следует отметить С.п. под действием широко распространенных комплексов внеш. факторов, таких, как климат (климатическое С. п.), космос, а также сочетание любых видов С. п. с окислением кислородом воздуха (напр., термоокислительное и фо-тоокислительное С.п,). Выделяют также спец. виды С.п. в условиях переработки, истирания, абляции, хранения, транспортирования и т. п. [c.415]

    Гидросфера - водная оболочка Земли, включающая океаны, моря, континентальные водоемы и ледяные покровы материков. Гидросфера обуславливает существование биологической жизни на планете, так как вода - необходимый компонент всех биологических процессов. Естественные водоемы, входящие в состав гидросферы, служат источниками промышленного и бытового снабжения водой, источниками энергии, путями сообщения. Свыше 95% всех вод гидросферы приходится на долю Мирового океана, играющего важную роль в поддержании жизни на Земле путем синтеза белковых веществ и жиров в массе фитопланктона, насыщения атмосферы кислородом, регуляции обмена веществ и поддержания динамического равновесия в природе. Промышленное производство приводит к загрязнению, засорению и истощению (континентальные водоемы) гид-росфер >1, в том числе и вод Мирового океана. [c.8]

    Изучение биологических мембран привело к разработке электродов на основе так называемых "нейтральных переносчиков" -макроциклических полиэфиров - антибиотиков (моноактин, грамицидин, валиномицин). Молекулы циклических полиэфиров содержат кольца иа атомов кислорода, энергетически способные вьшолнять роль сольватной оболочки вокруг катиона. Таким образом, происходит внедрение катиона в органическую фа у. При этом образуются подвижные заряженные комплексы, обеспечивающие катионную проводимость таких сред. Среди них наиболее известен К -селективный электрод с жидкой мембраной - раствором ва-линомицина в органическом растворителе. Коэффициенты селек-tивнo ти составляют = Ю- , = 1  [c.57]

    Ароматичо(Жис альдегиды обладают в основном twh же свойствами, что и жирные альдегиды, однако для них характерны и некоторые довольно специфические реакции окисление кислородом воздуха, реакция Канниццаро (действие концентрированного раствора щелочи), бензоиновая конденсация. Две последние реакции проходят и с альдегидами жирного ряда, но не имеющими атомов водорода при а-угле-родном атоме. Реакция Канниццаро, иначе называемая реакцией дисмутации, играет важную роль в биологических процессах. [c.131]

    НОЙ ВОЛНЫ меньше 290 нм. В нашей атмосфере сам кислород способен отфильтровывать солнечное излучение с длинами волн меньше 230 нм. Для диапазона длин волн между 230 и 290 нм необходимо представить другой заш,итный механизм. К счастью, в нашей атмосфере существует подходящий поглотитель, что позволяет организмам жить на суше в условиях большей или меньшей открытости отфильтрованным лучам Солнца. Этим поглотителем является озон, Оз, образующийся фотохимическим путем из Ог (см. разд. 8.2.2). Количество озона Б атмосфере и его распределение по высоте зависят от концентрации предшественника — кислорода и поэтому существенно изменяются в ходе эволюции атмосферы. Концентрации озона контролируются также скоростями процессов убыли этих молекул. Убыль регулируется каталитическими циклами с участием других следовых газов атмосферы, таких, как оксиды азота, которые сами, по крайней мере частично, имеют биологическое происхождение (см. с. 219). Мы уже отмечали, что появление кислорода в атмосфере Земли обусловлено в основном биологическими источниками. Теперь мы видим, что озон, необходимый в качестве фильтра для защиты жизни, присутствует в концентрации, определяемой не только генерируемым в ходе биологических процессов кислородом, но и возникающими в ходе биологических процессов следовыми газами, играющими роль в его деструкции. Такие наблюдения привели Ловлока к идее Геи (в древнегреческой мифологии — богиня земли), согласно которой климат, состав поверхности и атмосферы Земли поддерживаются на оптимальном уровне самой биосферой. [c.213]

    Токоферолы различаются по числу и положению метильных групп в бензольном цикле. Роль витаминов Е еще не выяснена до конца. Известно, что они благоприятствуют обмену жиров, поддерживают нормальную деятельность нервных волокон в мышцах, облегчают течение сердечно-сосудистых заболеваний. Токоферолы являются природными антиоксидантами. Они легко образуют свободные радикалы (за счет отрыва атома водорода от фенольного гидроксила), которые способны улавливать другие свободные радикалы, возникающие в организме в результате окислительных превращений биологически важных эндогенных субстратов. Например, они препятствуют разрушению кислородом ненасыщенных жирных кислот, приостанавливая дефадацию липидов клеточных мембран. Установлено, что ан-тиокислительные свойства токоферолов резко улучшаются в присутствии витамина С (явление синергизма). Так, их совместное присутствие увеличивает в сто раз сроки хранения свиного жира. [c.112]

    Роль рибофлавина в биологическом окислении была установлена в результате большого интереса биохимиков к процессам дыхания клетки. В 20-х годах Варбург обнаружил, что кислород реагирует с каким-то железосодержащим катализатором дыхания. Позже было показано, что краситель метиленовый синий часто может замещать кислород в качестве окислителя. Окисление в эритроцитах глюкозо-6-фосфата метиленовым синим требовало присутствия как фермента , так и кофермента , позднее идентифицированного как NADP+. Было установлено, что выделенный из дрожжей желтый белок обладает примечательным свойством обесцвечиваться под действием восстановительной системы, содержащей глюкозо-6-фосфат, белок и кофермент из эритроцитов. [c.253]

    Биологическое значение маскировки а-аминогрупп недостаточно ясно возможно, она защищает белок от атаки аминопептидаз или способствует закреплению N-концевой части полипептида в аполярном окружении либо на молекуле рецептора, либо внутри самого белка, чтобы препятствовать его контакту с раствором. Это предположение не относится к метилированию а-аминогруппы, обнаруженному в рибосомных белках, выделенных из Es heri hia oli [135], поскольку метилирование не элиминирует заряд. Физиологическая роль ацетилирования а-аминогруппы совершенно ясна в случае некоторых гемоглобинов рыб такая модификация помогает сохранять способность к связыванию кислорода независимо от рН-среды, что предотвращает выделение избыточного кислорода в плавательный пузырь [136] (разд. 10.3). [c.72]


Смотреть страницы где упоминается термин Кислород биологическая роль: [c.682]    [c.491]    [c.168]    [c.121]    [c.169]    [c.349]   
Общая химия Биофизическая химия изд 4 (2003) -- [ c.353 , c.354 , c.356 , c.364 ]




ПОИСК







© 2025 chem21.info Реклама на сайте