Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сталь фосфата

    Сталь фосфати-рованная То же 20 — — 0 — 0 143 [c.85]

    Весьма интересное предложение описано в патенте [328]. Тяжелые дистилляты частично сжигают в среде кислородсодержащего газа с таким расчетом, чтобы около 0,5% углерода сырья выделилось в свободном виде вместе с соединениями тяжелых металлов. Выделенные металлы можно переводить в фосфаты и использовать в производстве стали. [c.206]


    В Советском Союзе имеются громадные месторождения сульфатов кальция и натрия, которые пока что не используются в производстве серной кислоты, т. е. являются потенциальным сырьем. Необходимо также использовать гипс, который является отходом производства фосфорной кислоты путем воздействия серной кислоты на природные фосфаты кальция. При травлении стали серная кислота превращается в сульфаты железа. При очистке нефтепродуктов остается кислый гудрон, содержащий серную кислоту. В ряде органических производств получается в виде отхода разбавленная серная кислота, сильно загрязненная органическими примесями. Все эти и им подобные отходы производств, содержащие серную кислоту или ее соли, при нагревании в присутствии восстановителей дают диоксид серы, который можно перерабатывать на серную кислоту. [c.118]

    Ингибиторная защита. Для уменьшения коррозионного растрескивания металла в замкнутых системах к циркулирующим в них растворам добавляют ингибиторы (замедлители) коррозии. Так, добавление фосфатов в воду, подаваемую на питание паровых котлов, предотвращает возникновение высоких локальных концентраций ОН , вызывающих щелочную хрупкость стали. Коррозия углеродистой стали, подверженной воздействию кипящего концентрированного раствора нитратов кальция и аммония, замедляется при добавлении в раствор хлорида или ацетата натрия. [c.453]

    Фосфат и силикат натрия могут снизить коррозионное разрушение стали на 60—75 %, они мало адсорбируются на тонкодисперсной твердой фазе и не оказывают отрицательного воздействия на технологические свойства промывочных жидкостей. [c.114]

    Проточные охлаждающие воды обычно химически не обрабатывают, так как для этого потребовалось бы очень большое количество ингибиторов и возникли бы проблемы, связанные с загрязнением стоков. Иногда, чтобы снизить скорость коррозии стального оборудования, в воду добавляют полифосфат натрия или кальция (2—5 мг/л). В таких малых концентрациях полифосфаты нетоксичны, но могут возникать проблемы, связанные с предупреждением накопления фосфатов в реках и озерах при сбросе воды. В некоторых случаях имеется практическая возможность сместить индекс насыщения воды до более положительного значения. Иногда приходится применять соответствующие защитные покрытия или металлы более коррозионностойкие, чем сталь. [c.280]

    Фосфаты и полифосфаты находят применение в качестве замедлителей коррозии стали в воде и холодильных рассолах. Большой эффект достигается при совместном использовании фосфатов и хроматов. [c.188]


    Способы определения некоторых из этих элементов были подробно рассмотрены раньше. Определение углерода сжиганием описано в 127. Для определения фосфора сталь или чугун растворяют в азотной кислоте и в полученном азотнокислом растворе осаждают фосфат-ион молибденовой жидкостью. [c.454]

    Коррозию стали в воде замедляют хроматы, нитриты, нитраты и фосфаты щелочных металлов. Эти вещества получили название пассиваторов. При их употреблении на металлической поверхности образуются защитные оксидные пленки или пленки, состоящие из солей. [c.176]

    Фосфорную кислоту используют для защиты сталей от коррозии. Образующиеся при коррозии ионы Ре" + 1) образуют нерастворимый фосфат железа(П1), [c.481]

    Покрытия для автомобилей состоят из грунтовки и покрывного слоя в ряде случаев наносят и шпатлевку, которая служит как бы барьером, предотвращающим миграцию смолы, с целью исключения обесцвечивания покрытия и повышения адгезии между слоями [4]. Покрытия наносят главным образом на холоднокатаную сталь, поверхность которой предварительно обрабатывают щелочью, подвергают травлению кислотой и промывают растворами хроматов. Установлено, что самым эффективным способом предварительной обработки является такой, когда на металле образуется кристаллический поверхностный слой толщиной 2—3 мм, состоящий из гидратированного фосфата цинка и железа (рис. 13.1). [c.198]

    Лучший метод - холодное ускоренное фосфатирование. При этом используют более концентрированные растворы (табл. 43). Пасты для холодного фосфатирования изготовляют путем смешения указанного выше раствора с тальком в отношении 1 1 по массе (паста должна иметь консистенцию сметаны). Холодное фосфатирование можно осуществить также трехкратным нанесением на поверхность стали раствора при помощи тампона или кисти. Расход раствора 0,3 л на 1 м поверхности. Даже погружение в 1 %-ный раствор фосфорной кислоты обеспечивает улучшение прилипаемости (адгезии), не говоря уже о холодном фосфатировании. При фосфатировании на поверхности металла образуется равномерный и тонкий слой фосфатов железа, цинка или марганца. Температура раствора - 293-298 К, продолжительность обработки - 30-40 мин. Указанные компоненты вводят в ванну последовательно при интенсивном перемешивании раствора. Фосфатирование труб холодными растворами можно проводить вне ванн обрызгиванием или в специальной камере струйным методом. Очистку труб химическим методом выполняют в следующей последовательности. Очищенные и обмытые от случайных загрязнений трубы помещают в ванну с кислотой, смешанной с ингибитором. Ванна сложена из кирпича на кислотоупорном цементе и оштукатурена таким же цементом. Ее заполняют раствором ингибированной кислоты настолько, чтобы погруженная труба полностью покрывалась раствором. Отработанный раствор через пробковый трап по водостоку сбрасывают в [c.107]

    Электрохимические исследования образцов котельной стали при повышенных температурах и давлениях проводят в средах, содержащих хлориды, сульфаты, фосфаты и другие соли, а также различные кислоты и щелочи. В автоклаве обычно поддерживается температура < 300 °С. Такого рода исследованиями установлено, в частности, что процесс коррозии котельной стали в кислой среде имеет смешанный характер контроля, а в щелочной - анодный. [c.156]

    Применение ингибиторов. В настоящее время интенсивно ведется разработка эффективных ингибиторов коррозии —веществ, тормозящих или полностью предотвращающих процесс разрушения металлов в различных агрессивных средах. Но пока для защиты от КР еще не так много надежных ингибиторов. Хорошо себя зарекомендовало применение фосфатов для защиты котлового оборудования от КР. Для защиты коррозионно-стойких сталей типа 18-8 от КР в паро-воздушной среде можно применять добавки аммиака [221. [c.75]

    Эти ингибиторы в основном влияют на анодную реакцию и анодную ветвь поляризационной кривой (рис. 71). Некоторые анодные ингибиторы, например хромат-ионы (СгО ") и нитрит-ионы (N03), а в присутствии воздуха фосфаты и молибдаты, действуют, вызывая образование защитного (пассивирующего) оксидного слоя на поверхности стали. Однако, если концентрация ингибитора слишком мала, "В оксидном слое могут возникать поры и дефекты, где может наблюдаться ускоренная коррозия. Поэтому такие ингибиторы называют опасными ингибиторами . [c.72]

    Фосфаты, силикаты и бензоаты щелочных металлов являются анодными пассиваторами. Так, КазР04 образует на анодных участках стали фосфат железа, который ингибирует коррозию стали, погруженной в водный раствор хлорида натрия. Катионы пассиватора могут образовывать нерастворимый гидроксид на катодных участках корродирующего металла. Если погрузить стальную пластину в морскую воду, содержащую хлорид магния, то на катодных участках поверхности образуется пленка Mg(0H)2, т. е. хлорид магния служит катодным ингибитором коррозии стали в растворе хлорида натрия. Некоторые вещества обладают одновременно анодным и катодным действием. К ним относятся атмосферные пассиваторы, например Са(НСОз)2. Ион НСОз образует карбонат железа(П) на анодных участках, а ион Са — пленку Са(ОН)2 на катодных участках. [c.134]


    Одним из путей защиты от коррозии конденсационно-холодильных систем и оборотного водоснабжения является примененив различных солей фосфорных кислот (орто-, napo-, Триполи- и др.). Механизм действия их звключается в способности образовывать на поверхности стали нерастворимые, прочно сцепленные защитные плёнки третичных фосфатов, не препятствующих теплопередаче. [c.58]

    Применение хлорированных парафинов в качестве пластификатороа для поливиниловых пластмасс стало возможным лищь после того, как удалось найти высокоэффективный стабилизатор, а применение хлорированных парафинов в качестве пластификатора для полихлорвинила известно уже давно. Вследствие своей дещевизны, превосходных диэлектрических свойств и огнестойкости хлорированные парафины давно применяли как добавки к виниловым смолам. Практическое применение их стало возможным, когда были открыты превосходные стабилизирующие свойства двуосновного фосфата свинца (дифос), в результате чего продукты, содержащие хлорированный парафин в качестве пластификатора, в настоящее время находят применение в качестве электроизоляционных материалов [267]. [c.255]

    При определении фосфора в чугунах и сталях после растворения навески в НЫОз и окислении образовавшейся фосфористой кислоты до фосфорной фосфат-ион осаждают в виде (ЫН4)зР04- 12МоОз. Отфильтровав осадок, его растворяют в аммиаке, после чего осаждают молибденовую кислоту в виде РЬМо04, по массе которого и вычисляют содержание фосфора. Вычислить фактор пересчета для этого определения. [c.191]

    Теории электрохимической коррозии н пасснвиостн металлов лежат в основе методов их защиты от коррозии. К числу их относятся методы, направленные на снижение тока коррозии за счет повышения поляризации коррозионных процессов. Например, повышение водородного перенапряжения введением в коррозионную среду специальных веществ — ингибиторов — резко снижает растворение металла при коррозии с водородной деполяризацией. Предварительное удаление кислорода из агрессивной среды способствует снижению коррозионного тока. Широкое распространение получило нанесение защитных покрытий па поверхность металла металлических, лакокрасочных, полимерных, пленок из труднорастворимых соединений металлов (оксиды, фосфаты) и т. п. Высокой коррозионной устойчивостью обладают металлические сплавы (например, нержавеющие стали), поверхность которых находится в пассивном состоянии. Существуют электрические методы защиты металлов от коррозии, связанные с применением поляризующего тока. Металлу задается потенциал, при котором процесс его растворения исключается или ослабляется. Например, защищаемый металл поляризуется катодно, а анодом служит дополнительный кусок металла. Электрические методы применяются при защите крупных стационарных сооружений. [c.520]

    После выдержки образцов в морской воде с добавкой ортофосфорной кислоты максимумы дифракций, соответствующие продуктам коррозии, уменьшаются, причем это хорошо заметно как для у-РеООН, так и для a-FeOOH, т. е. менее стабильных фаз гидратов окиси железа. Ингибирование приводит к образованию кристаллических фосфатов, о чем свидетельствует появление на рентгенограммах максимумов d/n = 0,66 0,387 0,393 нм. Образовавшийся на поверхности стали трех-замещенный фосфат Рез(Р04)2-8Нг0 содержит %) 43 Fe, 28,3 Р2О5 и 28,7 НаО. [c.170]

Рис. 14.1. Микрофотография поверхности фосфатированиой мягкой стали марки 1010 (получена с помощью сканирующего электронного микроскопа). Покрытие получено из кислого раствора фосфата цинка с добавкой нитрата натрия в качестве ускорителя при выдержке в течение 1 мин при 65 °С [11а] Рис. 14.1. <a href="/info/1846342">Микрофотография поверхности</a> фосфатированиой <a href="/info/477694">мягкой стали</a> марки 1010 (получена с помощью <a href="/info/129221">сканирующего электронного микроскопа</a>). <a href="/info/1060167">Покрытие получено</a> из <a href="/info/58826">кислого раствора</a> фосфата цинка с <a href="/info/472095">добавкой нитрата</a> натрия в качестве ускорителя при выдержке в течение 1 мин при 65 °С [11а]
    В США прямое окисление природного газа осуществляют две фирмы. Фирма Ситиз сервис ойл компани имеет установку в г. Таллант (шт. Оклахома), на которой природный газ окисляют при умеренных температуре и давлении в смесь равных весовых количеств метилового спирта и формальдегида. Наряду с ними образуются в меньших количествах ацетальдегид и метилацетон схему этой установки см. в работе [10]. Согласно опубликованным патентам [11], природный газ, содержащий j—С4-угле-водороды, смешивают с 10 об.% воздуха и пропускают при 460° и 20 ama над твердым контактом. Первоначально катализатором служил платинированный асбест позже стали применять смесь фосфата алюминия и окиси меди на инертном носителе. Продукты окисления выделяли охлаждением газовой смеси, которую в заключение промывали при 0° частью конденсата, образовавшегося при охлаждении. Природный газ окислялся неполностью, тогда как кислород реагировал целиком отходящие газы либо возвращали обратно, смешивая со свежими порциями природного газа и воздуха, либо сжигали. Жидкие продукты реакции содержали в среднем 5—6% ацетальдегида, 34—36% метилового спирта, 20—23% формальдегида, воду и небольшие количества кислородных соединений более высокого молекулярного веса. Время реакции не превышало нескольких секунд, иногда даже меньше 1 сек. температуру реакции регулировали подогревом входящего в реактор газа до температуры на 50° ниже рабочей. Для максимального выхода формальдегида давление не должно было превышать 20 ат при 50 ат основным продуктом являлся метиловый спирт. В патентах указывается, что большая часть метана не реагирует и получаемые продукты образуются в результате окисления высших углеводородов. [c.72]

    Исследован механизм изнашивания углеродных материалов на основе графита и политетрафторэтилена при трении без смазки по модифиш<рованным металлическим поверхностям. Углеродные материалы были разработаны на полимер - олигомерных матрицах и содержали армирующие компоненты и смазки. Для модифицирования поверхностей трения применяли механические, химические и физико-химические методы создания заданных параметров микрорельефа и поверхностной активности. Триботехнические исследования проводили на машине трения типа УМТ по схеме вал-частичный вкладыш при нагрузке до Ю МПа и скорости скольжения до I м/с. Анализ фазового состава и строения поверхностей трения осуществляли методами растровой электронной и атомной силовой микроскопии. Газоабразивная обработка поверхностей трения приводит к формированию специфического рельефа с высотой микронеровиости 1-3 мкм. Химическое фосфатирование образцов из стали 45 образует мелкозернистую пленку фосфатов марганца и железа с размерами единичных фрагментов до 10 мкм. Обработка поверхности трения разбавленными растворами фторсодержащих олигомеров с формулой Rf-R , где Rf. фторсодержащий радикал, Rj - концевая фуппа( -ОН, -NH2, -СООН) вызывает заполнение микронеровностей рельефа и выглаживания поверхностей. [c.199]

    Химические покрытия. Поверхность защищаемого металла подвергают химической обработке с целью получения на нем пленки его химического соединения, стойкой против коррозии. Сюда относятся оксидирование — получение тонких прочных пленок оксидов (алюминия АЬОз, цинка 2пО и др.) фосфатирова-ние — образование на поверхности металла защитной пленки фосфатов, например Рез(Р04)г, Мпз(Р04) азотирование — насыщение поверхности металла (стали) азотом (путем длительного нагревания в атмосфере аммиака при 500—600° С) термическое (воронение стали) — поверхностное взаимодействие металла с органическими веществами при высокой температуре (при этом получается слой Рез04) создание на поверхности металла его соединения с углеродом (цементация) и др. [c.195]

    Фосфатные покрытия на стали получают из растворов орто-фосфорной кислоты и ортофосфатов марганца или цинка (например, гпНР04-(-Н3РО4). При реакции образуется пористый кристаллический фосфат металла, хорошо сцепленный с поверхностью стали. Сами по себе фосфатные покрытия не обеспечи- [c.237]

    Состав большинства неорганических веществ однозначно характеризует их молекулярное строение Н2304 — это всегда серная кислота ЫазР04 — это всегда фосфат натрия КА1 (504)2 —это всегда алюмокалиевые квасцы и т. д. В органической химии широко распространено явление изомерии— существуют разные вещества, имеющие одинаковый состав молекул. Эмпирические, суммарные формулы становятся поэтому для органических соединений неоднозначными простая формула С2Н6О отвечает как этиловому спирту, так и диметиловому эфиру более сложные эмпирические формулы могут соответствовать десяткам, сотням и даже тысячам различных веществ. С созданием бутлеровской теории химического строения стало ясно, что изомеры отличаются друг от друга порядком химической связи атомов — химическим строением. Определение химического строения, установление структурной формулы стало (и остается до сих пор) главной задачей при исследовании органических веществ. [c.84]

    Шлаки черной и цветной,мзгаллургии в расплавленном состоянии представляют собой растворы нч основе оксидов, и, кроме того, содержат сульфиды, фосфаты и другие соединения. От состава шлака, т. е. от соотношений между концгнграциями входящих в него соединений, зависят его свойства, важные для практики. Одним из таких свойств является способность расплавленного шлака извлекать из жидкой металлической ванны, содержащиеся в ней вредные примеси. Например, при выплавке стали или чугуна такими примесями являются сера, фосфор, мышьяк н т. п. [c.253]

    Широко распространено применение специальных веществ, замедляющих коррозию, — так называемых и н-г и б и т о р о в. Ингибиторы атмосферной коррозии в зависимости от условий применения делятся на летучие (парофазные) и контактные (ж и д к о ф а з н ы е). Одним из первых отечественных летучих ингибиторов, внедренных в промышленность, стал карбонат моноэта-поламина. Бумага, обработанная этим веществом, служит для обертки стальных изделий (например, измерительного или медицинского инструмента) при транспортировке и хранении. Широко распространены летучие ингибиторы — нитриты органических аминов, смеси аминов и нитрита натрия. Пример ингибиторов контактного действия — эфиры моно- и дикарбоновых кислот. Они, растворяясь в масле и смазках, повышают их коррозионно-защитные свойства. В нейтральной водной среде в качестве ингибиторов используют нитриты, хроматы, фосфаты, соли бензойной кислоты (например, бензоат натрия) и др. Их коррозионно-тормозящее действие связывают либо с окислением поверхности металла (нитриты, хроматы), либо с образованием пленки труднорастворимого соединения (фосфаты), либо с адсорбционными явлениями на поверхности металла (соли бензойной кислоты), вследствие чего повышается потенциал металла и замедляется его анодное растворение. [c.284]

    К методам предотвращения и замедления КР относится ингибирование. Этот способ упоминался еще первыми исследователями КР в середине 60-х годов. Традиционная карбонатная теория фактически свела КР к разновидности щелочной хрупкости [35] и для ингибирования растрескивания были предложены соединения, хорошо зарекомендовавшие себя для ее предотвращения хроматы, фосфаты, силикаты [96, И4, 135, 136, 171, 172, 191, 195]. Механохимические и электрохимические лабораторные исследования показали высокую эффективность этих соединений применительно к КР. В ранних публикациях зарубежных исследователей предполагалось [139, 140] вводить их в грунт. Однако дальнейшие исследования показали малую эффективность этого мероприятия вследствие низкой скорости продвижения фосфатов в грунте, а также высокой токсичности хроматов [136]. Ингибиторы могут также добавляться в праймер. По данным лабораторных исследований, проведенных за рубежом, в первое время после повреждения изоляции наиболее эффективны хроматы, а при более длительной эксплуатации - фосфаты вследствие меньших скоростей диффузии последних из праймера [135-137]. Предполагается, что действие ингибиторов ограничено по времени из-за диффузии активного вещества в грунт. Однако практическая реализация данного способа защиты затруднена вследствие ограниченной растворимости неорганического ингибитора в органической матрице праймера. Поэтому были проведены электрохимические исследования возможности ингибиро-ванмя КР с помощью органических ингибиторов. Трехэлектродная ячейка ЯЭС-2 заполнялась ингибитором в концентрации 100 мг/л, растворенным в карбонат-бикарбонатной среде. Исследования проводились при температурах 20, 40 60 и 80 °С. Рабочим электродом служила трубная сталь 17Г1С. В качестве критерия склонности [c.94]

    Содержание хрома в продукте не ниже 4,4%, хлор-иона — не менее 9%. Хромолан относительно хорошо растворяется в воде. Разбавленные растворы хромолана при длительном применении корродируют незащищенное железо, мягкую сталь и медь. Хромолан осаждается щелочами на стойкость растворов хромолана отрицательно влияет присутствие сульфатов, фосфатов и хро-матов. Хромолан также частично осаждается в жесткой воде, что обедняет ванну и ухудшает отделку. [c.238]

    К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6). [c.188]

    Низкоуглероднстые стали Растворы гидроокисей и нитратов (в некотором интервале потенциалов фосфаты и карбонаты тоже вызывают растрескивание) [c.105]

    Фосфаты, ио-лифосфаты В пресной воде (при pH > 6) Ре, А), 2п, Сс1, РЬ, мед-но-цинковые сплавы в морской воде полифосфаты защищают стали, особенно в сочетании с ионами кальция 0,001—0,1 для пресной воды для морской воды 0,2 полифосфатов при содержании ионов кальция до 0,15 [c.108]


Смотреть страницы где упоминается термин Сталь фосфата: [c.73]    [c.86]    [c.494]    [c.14]    [c.349]    [c.30]    [c.170]    [c.170]    [c.221]    [c.199]    [c.259]    [c.68]    [c.258]   
Определение анионов (1982) -- [ c.450 , c.461 ]




ПОИСК







© 2025 chem21.info Реклама на сайте