Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ингибиторы при изучении специфичности

    Пристальное внимание к проблеме получения меченых тритием органических соединений определяется несколькими объективными предпосылками достоинствами трития как радиоактивной метки (удобный период полураспада, высокая молярная радиоактивность и т.д.) наличием в настоящее время методов разделения сложных смесей с использованием высокоэффективной жидкостной хроматографии (ВЭЖХ) существенным преимуществом меченых тритием препаратов в исследованиях по лиганд-рецепторному связыванию высокими молярными радиоактивностями практическим отсутствием изотопных эффектов при специфическом связывании с рецепторами, что необходимо для изучения механизма действия биологически активных препаратов частым использованием меченых тритием соединений при фармакокинетических исследованиях для определения органа-мишени, где преимущественно накапливается лекарственный препарат, или скорости выведения этого препарата из живых организмов необходимостью тритиевых соединений для исследования метаболизма, изучения субстратной специфичности ферментов, а также использования их для поиска новых эффективных ингибиторов ферментов. Если при этом учесть, что тритиевые препараты как минимум в десять раз дешевле аналогичных С-меченых, то становится понятным большой интерес ко всему, что связано с получением тритиевых аналогов биологически активных соединений. [c.484]


    Известно, что каждый фермент может катализировать реакции только определенного типа (или определенных типов). Существует выраженное, в частности пространственное, соответствие между ферментом и субстратом именно из-за него фермент может действовать только на ограниченный ряд субстратов именно этим соответствием определяются пределы или границы действия ферментов, их так называемая специфичность. Изучение специфичности позволило выяснить, что субстрат во время реакции соединяется не со всей молекулой фермента, не с любой ее частью, а со строго определенным участком, получившим название активного центра. Этот центр участвует в процессе активации субстрата, в самом каталитическом акте он обладает мощным сродством к соответствующему субстрату. Ранее полагали, что в молекуле фермента много активных центров, но сейчас точно установлено, что их обычно один или два. При добавлении к ферменту некоторых веществ, влияющих на его активный центр (или ка его молекулу) в ином участке или иным способом, скорость катализируемой реакции уменьшается. Такие вещества называют ингибиторами. Этот термин обычно не применяют к веществам (например, сильным кислотам, основаниям, иногда органическим растворителям), которые просто разрушают ферментный белок, денатурируя, расщепляя его и т. п. Некоторые ингибиторы являются сильными ядами ферментов, действуя специфически, в очень малых количествах. [c.40]

    Изучение подавления активности ферментов служит одним из способов расшифровки механизма их действия. Подходом к решению последней задачи является изучение специфичности действия ферментов. В свою очередь, это требует корректного измерения кинетических параметров в присутствии изучаемого аналога субстрата. Рассмотрим способы определения характера взаимоотношений субстратов, их аналогов и ингибиторов ферментативной активности путем вычисления ряда кинетических параметров. [c.37]

    Ферментативная кинетика, занимающаяся количественным изучением реакций, катализируемых ферментами, представляет собой область науки, в которой математические методы нашли самое широкое применение она имеет огромную практическую ценность для биохимика. Это самый важный метод установления механизма катализа, которым мы располагаем. Кинетические исследования позволяют определить сродство субстратов и ингибиторов к ферментам и специфичность их связывания, найти максимальную скорость процесса, катализируемого специфическим ферментом, а также решить многие другие задачи. [c.5]


    Прежде всего необходимо отметить, что круг ингибиторов обычно значительно превышает круг субстратов и специфичность фермента к ингибированию оказывается меньше его субстратной специфичности. В общем виде причина этого достаточно ясна даже при рассмотрении одних лишь конкурентных ингибиторов. Если для катализа необходима адсорбция субстрата и его строгая ориентация относительно каталитических групп, то для ингибирования достаточно не только взаимодействия со всем адсорбционным центром, но и простого связывания ингибитора отдельными элементами адсорбционного центра, как правило состоящего из нескольких участков адсорбции. Поэтому изучение ингибирующего действия разнообразных структурных аналогов субстратов помогает в исследовании адсорбционных центров ферментов и свойств их отдельных элементов, а также химической природы основных, активных для катализа групп фермента. [c.70]

    Он оказался активным ингибитором Н-гемагглютинации (табл. 15). Это хорошо согласуется с ранее установленным фактом о доминантной роли фукозы в Н-специфичности. Однако, очевидно, более тш,ательное изучение роли фукозы необходимо проводить не с помош ью кислотного гидролиза, а другими методами, чтобы можно было получить достаточное количество активных фрагментов. [c.202]

    Рентгеноструктурный анализ ингибиторного комплекса ренина мыши с декапептидом позволил идентифицировать аминокислотные остатки фермента, формирующие специфические карманы, и сделать некоторые количественные оценки их взаимодействий с боковыми цепями остатков ингибитора [391]. Учитывая близость последнего к N-концевой последовательности ангиотензиногена, полученные здесь данные представляют несомненный интерес для последующего теоретического изучения невалентных взаимодействий ренина с истинным субстратом и решения задачи о природе его исключительной специфичности. [c.96]

    Главные цели изучения биокатализа, по-видимому, можно ограничить следующими тремя. Во-первых, достижением понимания принципов стереохимического механизма ферментативного катализа и возможностью количественного описания, исходя из знания структур взаимодействующих молекул, каталитического акта как спонтанно протекающего, взаимообусловленного на всех своих стадиях непрерывного процесса. Во-вторых, выяснением в каждом конкретном случае причины специфичности фермент-субстратных и фермент-ингибиторных взаимодействий. В-третьих, целенаправленным конструированием наборов ингибиторов, обладающих наперед заданными свойствами. Возникающие при достижениях этих целей проблемы и возможные подходы к их разрешению будут подробно обсуждены в четвертом томе монографии "Проблемы белка". А сейчас попытаемся ответить на вопрос о том, что нового привнес рентгеноструктурный анализ в изучение аспартатных протеиназ и в какой мере знание трехмерных структур ферментов и их ингибиторных комплексов смогло углубить понимание механизма каталитической реакции аспартатных протеиназ. Ответ на этот вопрос имеет общее для энзимологии значение, поскольку, как отмечалось, протеиназы являются наиболее изученными во всех отношениях объектами биокатализа. Рассмотрим гипотетические модели механизма действия аспартатных протеиназ, в основу разработки которых были положены данные о трехмерных [c.98]

    Ингибирование осаждения или агглютинации послужило критерием для установления олигосахаридных структур, обусловливающих специфичность А-, В-, 0(H)-, Le - и ЬеЬ-антигенов груин крови. Как только из групповых веществ крови выделяют и идентифицируют новые олигосахариды или как только становятся доступными синтетические вещества, их испытывают на ингибирующую способность строение антигенных детерминант выводят затем из структуры наиболее сильного ингибитора. Изучение ингибирования показало, что среди олигосахаридов, выделенных из групповых веществ крови, до сих пор самым эффективным ингибитором системы А-анти-А является трисахарид a-N-ацетил-в-галактоз-аминил-(1 -> 3)-Р-в-галактозил-(1 3)-]М-ацетил-в-глюкозамин [46 [, а системы В-анти-В — дисахарид 0-а-в-галактоииранозил-(1 3)-в-галак-тоза [47]. См. исчерпывающие обзоры, посвященные роли иммунохимии в выяснении структуры групповых веществ крови [26, 48]. [c.436]

    Активность большинства ферментов подавляется множеством соединений. Этот процесс часто отличается высокой специфичностью, и изучение связи между структурой ингибитора и его ингибирующей способностью оказалось весьма плодотворным для выяснения природы активных -центров и выявления комплементарности поверхностей биологиче-"Ских молекул. Ингибирование ферментов лежит также в основе действия большинства лекарств. [c.27]

    Ранее [ нами изучалос1> подавление растворения карбоната кальция в кислотах с помощью добавок поверхностно-активных веществ различных классов соединений. Из катионактивных веществ наиболее эффективными ингибиторами в растворе серной кислоты оказались соли аминов с развитой гидрофобной частью молекулы. При этом было обнаружено, что действие добавок чрезвычайно специфично. Изучение влияния факторов, определяющих подавление, связано с выяснением механизма процесса растворения и поэтому 60 представляет несомненный интерес. [c.55]


    Однако до полного понимания поведения ферментов in vivo еще далеко. Даже более простая задача выделения каждого из имеющих важное значение ферментов и изучение in vitro кинетики его реакции с соответствующими субстратами является весьма сложной. С одной стороны, активность ферментов, которая в молекулярном масштабе чрезвычайно высока, весьма чувствительна к температурным условиям, к pH раствора и к добавкам следов ингибиторов , по-видимому, блокирующих каталитический процесс. С другой стороны, фермент при обычных условиях реагирует через ряд связанных друг с другом и квазиравновесных реакций, включающих многие промежуточные вещества. Одни ферменты высоко специфичны (например, уреаза, гидролизующая только мочевину и незамещенные производные мочевины), в то время как другие ферменты реагируют только с одной стереохнмической формой оптически активных субстратов, а третьи — с рядом субстратов аналогичной структуры [4]. [c.18]

    Области применения аффинной хроматографии расширяются, поокольку метод основан на специфических взаимодействиях биологически активных веществ. Как видно из табл. 11.1, этот метод успешно используется при выделении самых разных соединений. Наряду с этим он полезен при изучении различных систем на аффинных сорбентах можно разделять низкомолекулярные энан-тиомеры и удалять нежелательные вещества из живых организмов. -Например, аффинной хроматографией можно разделить на оптические антиподы 0,Ь-триптофан. Используя специфическое выделение меченых пептидов, можно определить пептиды активного центра фермента, связывающего участка антител или участка пептидных цепей на поверхности молекулы. Аффинная хроматография может быть использована для изучения возможности замены природных пептидных цепей ферментов различными модифицированными синтетическими пептидами. Активные центры ферментов или антител, связывающие свойства субъединиц, специфичность ферментов по отношению к различным ингибиторам, комплементарность нуклеиновых кислот, взаимодействие нуклеотидов с пептидами, влияние присутствия различных соединений на образование специфических комплексов и т. д. могут быть исследованы с помощью аффинной хроматографии. [c.282]

    Изучение взаимодействия ИУК и ГК показало, что природные ингибиторы в пороговых концентрациях, не действующих на эндогенный рост, не способны полностью снять действие этих фитогормонов на ростовые процессы. Природные ингибиторы фенольной и терпеноидной природы способны подавлять ростовые процессы, активированные как ауксином, так и гиббереллином, т. е. они не обладают антигормональной специфичностью. [c.202]

    Действие большинства ферментов можно подавить, или ингибировать, определенными химическими реагентами. Изучение ингибиторов ферментов позволяет получать ценные сведения о субстратной специфичности ферменг тов, природе функциональных групп активного центра и механизмах каталити-> [c.242]

    Методом рентгеноструктурного анализа было исследовано большое число кристаллических ферментов. Результаты таких исследований часто сопоставляются с данными, полученными химическими методами при 1) определении аминокислотной последовательности ферментов, 2) изучении их субстратной специфичности, 3) исследовании действия специфических ингибиторов и 4) идентификации специфических функциональных групп в активном центре. С целью выявления возможной связи между каталитическим действием ферментов и их третичной структурой были изучены представители большинства основньгх классов ферментов (см. табл. 9-3). Здесь показаны изображения (в масштабе) молекул трех ферментов, иллюстрирующие некоторые их структурные и функциональные особенности, выявленные при рентгеноструктурном анализе кристаллов этих ферментов. [c.250]

    Многочисленные исследования с ингибиторами, проведенные Тиманом, Штраусом и др., дали противоречивые результаты. Ингибирование специфической стадии синтеза быстро нарушает уровень равновесного состояния промежуточных продуктов непосредственно на пути синтеза конечного соединения, а также на других путях синтеза с общими промежуточными продуктами. При изучении in vivo влияния ингибиторов на процессы, которые развиваются в течение нескольких дней, нельзя ожидать получения узкой специфичности. Пуриновые и пиримидиновые аналоги вначале могут ингибировать синтез нуклеиновых кислот, что в конечном результате приводит к спаду синтеза белков. Эта проблема особенно важна для растений, так как содержание белков в них очень низкое и они должны непрерывно синтезировать новые белки-ферменты. Выводы из длительных опытов с ингибиторами нужно делать с большой осторожностью. [c.345]

    Можно назвать еще следующие направления, по которым развивается современная ферментология изучение роли и действия отдельных факторов, влияющих на процесс,—температуры, pH среды, ее окислительно-восстановительного потенциала, концентрации субстрата и фермента изучение кинетики ферментативных реакций исследование специфичности ферментов — важнейшего свойства, определяющего их биологическую роль и возможности практического использования химического строения и действия ингибиторов ферментов, обратимого и необратимого, специфического и неспецифического торможения ими реакций изучение строения и функций различных кофакторов, в первую очередь специфических коферментов, их роли в каталитическом процессе, в обмене веществ исследование особенностей ферментных белков — состава, числа цепей, гидродинамических и электрохимических свойств, химической структуры далее — строения активных центров, их числа, их низкомолекулярных аналогов изучение механизма действия ферментов действия полифермент-ных систем и, наконец, образования ферментных белков, в том числе их биосинтез и образование из предшественников префер-ментов). [c.46]

    С помощью различных приемов изучения субстратной специфичности, опытов со смешанными субстратами и с ингибиторами ХЭ установлено, что в нервной системе разных насекомых содержатся разные ХЭ. У мух присутствует преимущественно фермент, подобный истинной ХЭ. Этот фермент гидролизует, кроме холиновых эфиров, алифатические эфиры (триацетин) и ароматические эфиры (фенилацетат и его производные). У гороховой тли содержится фермент со свойствами псевдохолинэстеразы. У пчелы, кроме истинной ХЭ, видимо, имеется еще особая ХЭ, расщепляю- [c.566]

    Стерические факторы не были детально изучены для фосфорорганических ингибиторов, но зато имеются обширные данные, полученные при исследовании специфичности на примере различных субстратов и ингибиторов, синтезированных специально для изучения природы активных центров. Данная книга не является трактатом о холинэстеразе, поэтому подробности этих исследований здесь не обсуждаются, но некоторые выводы из них играют важную роль при изучении механизма действия фосфорорганических ингибиторов. На основании ряда работ Фрисса и его сотрудников (см., например, работы [37—39]) стало очевидным, что совершенна не обязательно наличие в молекуле четвертичной группировки для взаимодействия с анионным центром фермента и карбонильной группы для реакции с его эстеразным центром. Для взаимодействия с холинэстеразой необходимо существование участка с повышенной электронной плотностью, удаленного на расстояние СНа — СНа-группы от полиметилированного атома азота (предпочтительнее четвертичного) [38]. Однако взаимодействовать с анионным центром холинэстеразы может и другая, отличная от четвертичного азота, катионная группа (например, в метилсульфате изо-систокса). [c.119]

    Существуют и такие вещества, которые для одних катализаторов — активаторы, а для других — ингибиторы. Напомним, что реакцию окисления фенетидина броматом катализируют соединения ванадия и железа. С помощью этой реакции можно определять в миллилитре микрограммы ванадия. При добавлении к раствору сульфосалициловой кислоты чувствительность реакции на ванадий повышается в 100 000 раз, тогда как железо образует с той же самой сульфосалициловой кислотой каталитически неактивное соединение. Таким образом, для ванадия сульфосалициловая кислота— активатор, а для железа ингибитор. По-видимому, изучение подобных явлений — одно из возможных направлений поисков специфичных реакций. [c.99]

    Что Касается ацетилхолинэстеразы, то изучение обратимых ингибиторов, таких, как диамины и стерео-специфичные аминоспирты, проводилось с целью выяснения свойств поверхности активной области при этом был обнаружен по крайней мере один анионный центр в активной области [350, 351. Это также объясняет взаимодействие ацетилхолинэстеразы с некоторыми ка-тионоидными субстратами помимо ацетилхолина [352]. [c.136]

    Структурная специфичность ЛВ по отношению к целевым биомакромолекулам (рецепторам) является необходимым, но недостаточным условием избирательности и интенсивности их действия. При постоянном числе рецепторов эффект препарата зависит от концентрации действующей субстанции, длительности действия, степени адаптации рецепторов, наличия конкурентных или неконкурентных ингибиторов ферментативных реакций и других вне- и внутриклеточных факторов. Любой из этих факторов может оказаться причиной отсутствия биологического эффекта высокоактивного препарата. Исследование закономерностей процессов, происходящих с введением в организм физиологически активном, в частности лекарственным, соединением, составляет предмет изучения фармакокинетики. К фармакокинетическим процессам относятся  [c.74]


Смотреть страницы где упоминается термин Ингибиторы при изучении специфичности: [c.154]    [c.570]    [c.435]    [c.108]    [c.22]    [c.181]    [c.183]    [c.575]    [c.204]    [c.28]    [c.35]    [c.298]   
Ферменты Т.3 (1982) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте