Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие с ионными кристаллами

    Ионная кристаллическая решетка содержит в своих узлах ионы чередующихся зарядов противоположного знака. Связь между ионами не имеет специфической направленности и обусловлена электростатическими взаимодействиями. Каждый ион контактирует с несколькими ионами противоположного заряда, в связи с чем в ионном кристалле отдельные молекулы не могут быть выделены. Число ионов, скоординированных около данного иона, называется координационным числом оно зависит как от соотношения значений зарядов, так и ог соотношения размеров ионов, составляющих кристаллическую решетку. Так, например, в хорошо известной структуре хлорида натрия (рис. 10) ионы натрия и хлорид-ионы закономерно чередуются вдоль трех взаимно перпендикулярных направлений, так что координационное число каждого нз них равно 6. Ионная кристаллическая решетка присуща различным солям. Ионным кристаллам свойственны значительная твердость, сравнительно небольшая летучесть и довольно высокие температуры плавления. [c.70]


    Характер химических связей и свойства веществ в твердом состоянии можно понять, используя теории электростатического взаимодействия (ионные кристаллы), ковалентной химической связи (атомные кристаллы) и свободных электронов (металлические кристаллы). Метод молекулярных орбиталей в виде зонной теории по- [c.113]

    Твердые вещества, при растворении которых в воде и других полярных растворителях, образуются электролиты, являются, как правило, кристаллическими телами, имеющими ионные или близкие к ионным решетки. В чисто ионных решетках не существует молекул вещества, и кристалл любой величины можно рассматривать как одну огромную молекулу. Ионы противоположных знаков, составляющие такую решетку, связаны между собой большими электростатическими силами. При переходе ионов Е раствор, энергии электростатического взаимодействия ионов в решетке противопоставляется энергия взаимодействия ионов с дипольными молекулами растворителя, который втягивает ионы решетки в раствор. При этом ионы окружаются молекулами растворителя, образующими вокруг иона сольватную (в частном случае — гидратную) оболочку. Энергия взаимодействия ионов различных знаков, перешедших в раствор и окруженных сольватными оболочками, уменьшается по сравнению с энергией их взаимодействия в решетке (при равных расстояниях г между ионами) обратно пропорционально диэлектрической проницаемости растворителя О в соответствии с законом Кулона  [c.391]

    Однако представления о беспорядочном распределении ионов в растворе не соответствуют действительности, так как они основаны на игнорировании электростатического взаимодействия между ионами. Электрические силы проявляются на относительно больших расстояниях, и в сильных электролитах, где диссоциация велика, а концентрация ионов значительна и расстояния между ними невелики, электростатическое взаимодействие между ионами настолько сильно, что не может не сказываться на характере их распределения. Возникает тенденция к упорядоченному распределению, аналогичному распределению ионов в ионных кристаллах, где каждый ион окружен ионами противоположного знака. [c.393]

    Все эти особенности структуры силикатных кристаллов приводят к тому, что хотя ионы и содержатся в них, однако структура кристалла в отличие от типичных ионных кристаллов определяется здесь силикатным или алюмо-силикатным скелетом, связи в котором являются преимущественно ковалентными. Этим объясняются высокие температуры плавления силикатов и их нелетучесть. Это же приводит к свойственной некоторым силикатам способности легко обменивать ионы одних металлов на ионы других. Так, некоторые природные цеолиты или искусственно приготовляемые силикаты при взаимодействии с водными растворами солей могут частично обменивать содержащиеся в них катионы на катионы, имеющиеся в растворе. При этом обязательным условием является, чтобы размеры этих ионов не различались значительно. Так, ионы натрия Ыа" (радиус 1,05 А) легко обмениваются на ионы кальция Са + (радиус 0,95 А) в соотношении 2 1, причем сохраняется нейтральность кристалла в целом. Искусственные цеолиты используются также в качестве адсорбентов молекулярные сита, см. стр. 373)..  [c.135]


    При физической адсорбции на поверхности ионных кристаллов основную роль играют ориентационное и индукционное взаимодействия, а при адсорбции на угле и других подобных материалах процесс определяется дисперсионным взаимодействием. [c.372]

    Впоследствии было установлено, что энергетические затраты на разрушение решетки при растворении кристаллов, на диссоциацию солей и кислот и т. п. компенсируются энергией сольватации ионов — энергией, которая выделяется при взаимодействии ионов с растворителем, или энергией гидратации, если речь идет о водных растворах (И. А. Каблуков). [c.431]

    Для объяснения межатомных и межмолекулярных взаимодействий в кристаллах, жидкостях и газах достаточно ознакомиться с пятью типами химической связки ковалентной связью в неметаллах, металлической связью, ионной связью, водородной связью и вандерваальсовым взаимодействием. Каждый из этих типов связи определяет ту или иную прочность взаимодействия между атомами. Рассмотрим их подробнее. [c.601]

    При повышении температуры степень дефектности кристаллов увеличивается и возрастает их электрическая проводимость. При плавлении ионных кристаллов количество неупорядоченных ионов (из-за больших размахов их тепловых колебаний, изменения силы взаимодействия между ионами) возрастает по сравнению с твердым состоянием. Поэтому многие ионные расплавы обладают хорошей электрической проводимостью, увеличивающейся при дальнейшем росте температуры  [c.465]

    Неквантовые определения основаны на анализе взаимодействий ионов, рассматриваемых как жесткие сферы, заряды которых рав- Ы ионным зарядам. Энергия связи между такими ионами кр определяется электростатическим (кулоновским) взаимодействием — путем суммирования произведений энергий взаимодействия одного иона со всеми ионами кристалла на число пар таких ионов в грамм-молекуле кристалла  [c.13]

    Рассмотрим строение кристалла сульфида цинка 2п5 (см. рис. 52, в). Строение кристалла можно объяснить донорно-акцептор-ным взаимодействием ионов Zn + и S  [c.98]

    Электрическое поле, существующее у поверхносги ионного кристалла, также должно вызывать поляризацию адсорбированной молекулы. Энергия взаимодействия, обусловленная этим эффектом, равна [c.39]

    У ионных кристаллов (рис. 1.9, 6 решетка построена из чередующихся ионов с противоположными зарядами, связь между которыми осуществляется за счет сил электростатического взаимодействия — кулоновских сил. Хотя энергия связи в решетке этого типа такая же, что и у атомного [составляет (8 — 12) X X 10 кДж/моль], прочность тел с этой структурой значительно ниже, так как в них связь рассеянная , ненаправленная. Поэтому, представители кристаллов такого типа хотя и обладают большой прочностью, высокой температурой плавления, малой летучестью, низкими тепло- и электропроводностями, но хорошо растворяются в полярных растворителях. Таковы неорганические соли и большинство минералов. [c.37]

    Энергию ионных кристаллов можно получить, сложив энергии взаимодействия всех пар ионов (для п = оо)  [c.113]

    Мерой силы электростатического взаимодействия ионов в кристалле служит энергия решетки (разд. 6.4.2), которая растет с увеличением заряда ионов и с уменьшением расстояния между ними (суммы ионных радиусов). В табл. В.1 на примере галогенидов щелочных металлов показана взаимосвязь энергии решетки, механических и термических свойств веществ. [c.349]

    Объяснение. Как известно, кристаллы сильно полярных солей состоят из ионов, которые образуют так называемую кристаллическую решетку. Ионы в такой решетке связаны между собой электростатическими силами притяжения. Силы взаимодействия в ионных кристаллах весьма значительны. В твердом виде ионные кристаллы не проводят электрический ток, так как в них электроны прочно удерживаются в атомных орбитах отдельных ионов. В расплавленном состоянии кристаллические вешества проводят электрический ток, причем электропроводность осуществляется за счет переноса ионов. [c.68]

    Ионная решетка. Ионные кристаллы имеют в узлах пространственных решеток положительно и отрицательно заряженные ионы, которые связаны между собой электростатическими силами притяжения разноименных зарядов. Силы взаимодействия в ионных кристаллах весьма значительны, благодаря чему вещества с ионным типом решетки обладают высокой прочностью, высокими температурами плавления и малой летучестью. [c.32]

    Как показывают термодинамические и модельные расчеты, энергия взаимодействия катионов и анионов с дипольными молекулами растворителя (энергия сольватации) во многих случаях оказывается достаточной для того, чтобы компенсировать энергию электростатического взаимодействия ионов в ионных кристаллах (энергию кристаллической решетки) или энергию ковалентной связи атомов в таких молекулах, как НС1 илн НВг. В результате растворы электролитов являются устойчивыми ионными системами, содержащими сольватированные катионы и анионы. [c.75]


    Электролитическая диссоциация может протекать по двум основным механизмам. Возможно образование (например, водных) растворов электролитов при разрушении ионных кристаллов, например, КС1 при взаимодействии с растворителем. Уже [c.161]

    Таким образом, условием хорошего смачивания жидкостью твердого тела является слабое взаимодействие между ее молекулами (слабая когезия). Жидкости с малым поверхностным натяжением обычно хорошо смачивают поверхности. Например, углеводороды, поверхностное натяжение которых невелико и составляет около 20—30 мДж/м , смачивают практически любую поверхность. Вода, поверхностное натяжение которой при 20 °С составляет 72 мДж/м , смачивает лишь гетерополярные вещества (стекло, алюмосиликаты, некоторые минералы, ионные кристаллы). Ртуть (поверхностное натяжение 472 мДж/м ) практически не смачивает твердые тела. Принято называть лиофильными поверхности, хорошо смачиваемые жидкостью ( os 0 > 0), в частности гидрофильными — поверхности, сма- [c.198]

    Ионные кристаллы. Кристаллические решетки этого типа состоят из чередующихся положительно и отрицательно заряженных ионов, между которыми действуют электростатические силы взаимодействия. Ионные кристаллы образуются при взаимодействии атомов, имеющих большую разность электроотрицательности. Примерами кристаллов, в которых преобладает ионный тип связи, могут быть МаС1, СаРг, КР. В состав ионных соединений могут входить также сложные ионы, например ЫОз и 504 .  [c.77]

    В кристаллах каждый данный ион окружен некоторым числом ионов противоположного знака (шестью у Na l), с которыми он взаимодействует в одинаковой степени. Таким образом, здесь нет преимущественного взаимодействия данного иона с каким-нибудь определенным ионом противоположного знака. Вследствие этого обычное представление о молекулах в том смысле, как мы пользовались им, рассматривая газы, здесь должно быть изменено. В типично ионном кристалле в сущности весь кристалл можно рассматривать как одну гигантскую молекулу. [c.125]

    Атомы кислорода, содержащиеся в молекулах воды, при взаимодействии с катионами ионных кристаллов или с нейтральными атомами могут образовать донорио-акцепторную связь, играя при этом роль доноров электронов за счет своих неподеленных электронных пар. Этому способствует при взаимодействии атомов кислорода с катионами гголяризуюш,ее действие катиона на молекулы воды. [c.141]

    Вследствие полярности молекул вода проявляет высокую активность при различных химических взаимодействиях, является хорошим растворителем для электролитов, которые в воде подвергаются диссоциации. Молекулы воды отличаются способностью к образованию водородных связей, что оказывает влияние па взаимодействие воды с другими веществами и на свойства водных растворов. Молекулы воды способны к образованию допорно-акцеп-горных связей, в которых они являются донорами неподеленных электронных пар ь ислородного атома. Все это обусловливает высокую реакционную и растворяющую снособность воды. В воде растворимы очень многие вещества. При этом часто молекулы (или ионы) растворяемых веществ образуют соединения с молекулами воды. Это явление называется гидратацией. Молекулы воды взаимодействуют также с поверхностью ионных кристаллов. [c.170]

    Теория кристаллического поля. В теории кристаллического поля (Ван-Флек) основной причиной стабильности комплекса считают электростатическое притяжение, возникающее между ионным или полярным лигандом (например, С1 , Н ,0) и центральным катионом. Рассматриваемые силы взаимодействия сходны с темн, которые су-шествуют в ионных кристаллах отсюда и происходит название теории. -Орбитали приведены на рис. 10. В свободном атоме или ионе энергии всех -электронов, принадлежащих к одной и той же электронной оболочке, одинаковы. Эти электро1И ,1 занимают одии энергетический уровень и потому вырождены. Лиганды, присоединенные к положительному иону, являются или отрицательными ионами, или полярными молекулами, повернутыми к комплексооб-разователю своим отрицательным концом. Между -орбиталями и отрицательными лигандами действуют силы отталкивания, увеличивающие энергию -электронов. В результате этого взаимодействия энергия электронов на -орбиталях, расположенных близко к лигандам, возрастает, а энергия электронов на -орбиталях, удаленных от ли1андов, уменьшается т. е. под действием лигандов происходит расщепление энергетических уровней -орбиталей и вырождение снимается. Так как -электроны в незначительной степени отталкиваются лигандами, происходит замена всего -уровня некоторым новым, который расщепляется на несколько подуровней. [c.46]

    Примером ионной кристаллической решетки являются кристаллы поваренной соли, возникающие при конденсации молекул НаС1, в свою очередь образованных в результате взаимодействия ионов Ыа+ и С1 . Если в качестве элементарного фрагмента кристаллической решетки выбрать какую-либо простейшую геометрическую фигуру, то кристаллическую структуру КаС1 можно изобразить в виде куба, вершины которого (узлы кристаллической решетки) заняты ионами Ыа" " и С1 . При этом перемещение по кристаллической решетке в одном из трех направлений, совпадающем с ребрами куба, фиксирует регулярное расположение ионов Ка+ и С1 , т. е. чередование положительных и отрицательных зарядов. Сильное взаимное притяжение разноименных ионов обеспечивает высокую прочность ионных кристаллов и объясняет их сравнительно высокие температуры плавления и кипения (табл. 12). [c.41]

    Величина этого члена составляет линть 6,6% от всей той энергии кулоновского взаимодействия, которая имела бы место, если бы адсорбируюгций ион не бькт окружен со всех сторон другими ионами кристалла. В результате взаимодействия адсорбируемого иона одновременно со всеми ионами кристалла силы [c.34]

    Сходным образом ведут себя молекулы, у которых распределение зарядов более сложно. В молеку.те углекислоты распределение зарядов носит характер квадруполя. Ленель [36] определил расчетным путем то влияние, которое оказывает на энергию адсорбции взаимодействие квадруполя с поверхностью кристалла галоидной соли щелочного металла, и пришел к выводу, что оно может вызвать увеличение энергии адсорбции прнбл Изительно на 3 ккал/моль. Недавно Дрэйну [37а] удалось получить очень важный результат, который состоит в том, что теплота адсорбции азота на ионных кристаллах во многих случаях оказывается значительно большей, чем теплота адсорбции кислорода и аргона на тех же поверхностях, чего не наблюдается, когда эти газы адсорбируются на поверхностях, не имеющих ионного характера. Как было показано названным автором, аномальное поведение молекул азота обт ясняется наличием у них квадруполей. Мы вернемся к этой проблеме в разделе VI, 2. [c.38]

    Дальнодействие электрических сил взаимодействия ионов в кристаллах не проявляется при расстояниях К между частицами ДФ, значительно превышающих межионные, из-за практически полной взаимной нейтрализации электрических полей разноименно заряженных ионов. То же самое происходит в случае взаимодействия частиц твердой ДФ, составленных из полярных молекул с постоянными диполями полярные молекулы, положения которых в твердом теле жестко.фшссированы, обычно располагаются так, что их поля взаимно нейтрализуются. Лишь у молекул, находящихся на поверхности, электрические моменты остаются нескомпенсированными. К ориентационным и индукционным силам правило аддативности абсолютно неприменимо. Дисперсионные же силы неспецифичны, аффективны, не экранируются и для двух взаимодействующих частиц твердого тела могут быть найдены суммированием дисперсионных сил взаимодействия между всеми составляющими их молекулами [186]. [c.98]

    В водных растворах сильные электролиты обычно полностью диссоциированы. Поэтому число ионов в них больше, чем в растворах слабых электролитов той же концентрации. И если в растворах слабых электролитов концентрация ионов мала, расстояния между ними велики и взаимодействие ионов друг с другом незначительно, то в не очень разбавленных растворах сильных электролитов среднее расстояние между ионами вследствие значительной концентрации сравнительно мало. Например, в насыщенном растворе хлорида натрия среднее расстояние между ионами всего только в 2 раза больше, чем в кристаллах Na l. [c.240]

    Наиболее просто объяснить образование раствора ионного электролита, учитывая лишь электростатическое взаимодействие ионов с полярными молекулами растворителя. Как известно, центры положительных и отрицательных зарядов полярных молекул не совпадают, одна часть такой молекулы заряжена положительно, другая — отрицательно. Для примера представим себе кристалл ионного электролита, погруженный в раствор полярного растворителя. Ионы кристалла, находящиеся на его поверхности, притягивают к себе противоположные по знаку концы молекул растворителя и отталкивают одноименные. Поэтому молекулы растворителя, расположенные вблизи ионов, ориентируются вокруг них и со.здают результирующую силу, стремящуюся вырвать ион иа кристаллической решетки и перевести его в жидкость. Чем больп1е эта сила и чем сильнее тепловое движение ионов, тем больше их при прочих равных условиях сможет перейти в раствор. Обратный процесс затрудняется образованием вокруг каждого иона сольватной (для воды гидратной) оболочки ориентированных молекул растворителя. [c.209]

    Термин электролитическая диссоциация подразумевает образование ионов в растворе при распаде нейтральных молекул растворяемого вещества. Однако фактически часто ионы существуют уже до растворения . Так, например, твердый хлорид натрия представляет собой кристалл, построенный из ионов Na+ и С1 . При растворении Na l происходит разрушение кристалла за счет взаимодействия ионов с диполями растворителя. Чтобы доказать это, нужно рассчитать энергию, необходимую для разрушения кристаллической решетки, и сопоставить ее с энергией сольватации, т. е. с выигрышем энергии за счет взаимодействия ионов с растворителем. Если эти энергии окажутся одного порядка, то вывод о разрушении кристаллической решетки соли за счет ион — дипольного взаимодействия можно считать правильным. [c.17]

    Теория Френкеля — Шоттки, позволяет получить количественные соотношения между проводимостью и концентрацией дефектов. Поэтому, измерив проводимость твердого электролита, можно по соответствующим уравнениям вычислить число дефектов. Было найдено, например, что в Na l при температуре, близкой к температуре плавления, концентрация вакансий равна (1 вакансия на каждые 10 000 катионов). Малая концентрация вакансий служит одной из причин того, что нормальные ионные кристаллы (типа Na l, Ag l и др.) даже при высоких температурах и в присутствии небольшого количества примесных ионов обладают проводимостью, не превышающей 0,1 См/м. Поскольку вакансии и межузельные ионы заряжены, можно ожидать, что они будут взаимодействовать между собой так же, как ионы в растворах электролитов. Френкель впервые указал, что это взаимодействие можно описать теорией Дебая — Гюккеля. Взаимодействие дефектов ведет к снижению энтальпии их образования и сказывается на величине проводимости ионных кристаллов. [c.107]

    В ионных кристаллах, например солях, энергия определяется в основном электростатическим взаимодействием ионов. Их пространственное расположение определяется в первую очередь особенностями плотной упаковки шаров разного размера. Если один из ионов меньше другого (например, в СзС1), то координационное число 12 не может осуществиться. В решетке СзС ион цезия находится внутри куба, Б верши- [c.497]

    Раствор красных кристаллов в воде содержит также ионы калия, но обнаружить в растворе ион N" и Fe + качественными реакциями не удается. Изучение электропроводности раствора показывает, что одна молекула вещества распадается на четыре иона. На основании этих данных можно предположить, что в растворе наряду с ионами калия содержатся ионы состава Fe eNe . Ион N" очень прочный, и есть все основания считать, что при взаимодействии ионов Fe" и N" он сохраняет свое строение и состав. [c.129]


Смотреть страницы где упоминается термин Взаимодействие с ионными кристаллами: [c.393]    [c.115]    [c.240]    [c.642]    [c.145]    [c.538]    [c.392]    [c.124]    [c.12]    [c.34]    [c.75]    [c.176]    [c.161]   
Структура и симметрия кристаллов (0) -- [ c.156 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ионные

Ионов взаимодействие

Кристаллы ионные

Кристаллы ионов



© 2025 chem21.info Реклама на сайте