Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрограф спектрометр

    Как указано в гл. 3, молекулярная масса достаточно термостойкой и летучей пробы, способной образовать достаточно интенсивный для измерения пик молекулярного иона, может быть установлена с помощью метода масс-спектрометрии. Кроме того, использование относительного содержания изотопов (т. е. данных об интенсивности ионов М- -1 и М4-2), полученных на масс-спектрографе, разрешающем пики с разницей в 1 а. е. м., или точных значений масс, определенных на масс-спектрографе высокого разрешения, часто позволяет установить молекулярную формулу неизвестного соединения. [c.111]


    Весьма перспективен метод масс-спектроскопии, основанный на определении массы (т) или отношения массы к ее заряду mie) и на определении относительного количества ионов, получаемых из исследуемой смеси частиц. Можно точно измерить массы ионизированных частиц на основании данных, полученных при разделении их в пространстве и во времени. Заряженные частицы разделяют, пропуская их через электрическое и магнитное поле. Полученный масс-спектр состоит из отдельных линий различной интенсивности и толщины. Линии регистрируют фотографическим (масс-спектрография) и электрическим способами (масс-спектрометрия). [c.451]

    Вместо описанного выше масс-спектрографа обычно применяют приборы другой конструкции, в которых ионы подвергаются воздействию как электрического, так и магнитного полей. Конструкция этих приборов позволяет фокусировать пучки ионов с одинаковым значением Miz на щель приемника ионов, соединенного через усилитель с быстродействующим самописцем. Такой масс-спектрометр при изменении электрического или магнитного поля в течение нескольких секунд дает развертку (сканирует) в широком диапазоне значений M/z. Такого рода приборы играют исключительно важную роль в химическом анализе— они позволяют определять массы частиц — фрагментов различных размеров, на которые предварительно расщепляется в специальном устройстве (ионном источнике) анализируемое соединение. [c.87]

    Образец, предварительно упаренный до 1—2 капель (объем 25—50 мкл), переносят микрошприцем во входной зонд масс-спектрометра, медленно выпаривают и анализируют. При этом необходимо выполнять холостые опыты, отбирая аналогичную фракцию до выхода интересующего нас пика, упаривая ее и вводя в масс-спектрограф, чтобы убедиться в отсутствии фоновых примесей, которые могут дать значительные пики и мешать правильной идентификации. [c.172]

    Масс-спектрометрические методы анализа основаны на определении масс отдельных ионизированных атомов, молекул и радикалов, в результате комбинированного действия электрического и магнитного полей. Регистрацию разделенных частиц проводят электрическим (масс-спектрометрия) или фотографическим (масс-спектрография) способами. Определение проводят на приборах—масс-спектрометрах или масс-спектрографах. [c.329]

    Масс-спектрометрия — наиболее точный метод определения молекулярной массы органических соединений. Однако при этом необходимо, чтобы определяемое вещество было бы достаточно устойчивым при температуре ввода в масс-спектрограф. Кроме того, структура соединения должна допускать возможность образования достаточно интенсивного пика молекулярного (первичного) иона. Если при определении температуры кипения или при газохроматографическом анализе (см. выше) изучаемое вещество проявляет признаки разложения, то для определения его молекулярной массы лучше применить другие методы (осмометрию в паровой фазе, метод Раста и др.). [c.93]


    Определения проводят с помощью специальных приборов—масс-спектрометров или масс-спектрографов (рис. 68), описываемых в курсах физики. [c.313]

    Большинство масс-спектрометров измеряет только положительно заряженные ионы, однако вполне возможно проводить также исследование отрицательно заряженных ионов. Таким образом, масс-спектрометр может использоваться для измерения отношения массы к заряду, определения количества ионов и изучения процессов ионизации. За сорок лет, прошедшие с момента открытия принципов анализа положительных ионов, его применение непрерывно расширяется. Новые области применения вызвали к жизни новые конструкции приборов, а конструктивные усовершенствования в свою очередь стимулировали развитие новых областей применения разнообразной масс-спектрометрической техники. Конструирование приборов и их использование развивалось по следующим двум основным направлениям первое относилось к измерению относительного количества ионов различных типов, и соответствующие приборы были названы масс-спектрометрами, второе — к точному определению масс на масс-спектрографах. В масс-спектрометрии используются электрические детекторы ионных токов, и сигнал до регистрации обычно усиливается электронными схемами. В масс-спектрографах ионный луч обычно детектируется и регистрируется фотографически. На заре развития метода чувствительность фотографического детектирования ионного пучка была выше электрического. Главным образом поэтому фотографический детектор, для которого пригодны только слабые ионные пучки, стал синонимом очень точного измерения масс. [c.13]

    Приблизительно в то же время, когда Астон сконструировал свой первый масс-спектрограф, Демпстер [455] построил свой первый масс-спектрометр. В основу метода фокусировки пучков определенных масс Демпстер положил метод, открытый Классеном [348, 349] и использованный им для электронного пучка. Прибор Демпстера схематически изображен на рис. 2. Пучок ионов, ускоренных напряжением V, входит в постоянное магнитное поле, расположенное под прямым углом к направлению движения ионов. Ионы с массой т и зарядом е попадают в магнитное поле со скоростью V, причем, — [c.18]

    В отличие от масс-спектрографа Астона, в масс-спектрометре Демпстера осуществляется фокусировка ионного луча по направлению, а не по скоростям. В то время как отклоняющие поля Астона играли роль призм , Демпстер использовал магнитное поле как линзу . Рис. 3 иллюстрирует фокусирующее воздействие однородного магнитного поля на пучок ионов с одинаковой массой [c.19]

    Большинство описанных приборов является масс-спектрографами [1335], однако лишь в двух случаях одновременная двойная фокусировка выполняется для всех масс, и в них фотографическая пластинка помещается в плоскости двойного фокуса. В других случаях линии фокуса скорости и направления при изменении масс пересекаются под углом в точке двойного фокуса для данной массы. Оптимальное положение фотопластинки находят, располагая пластинку вдоль линии фокусов по направлению, так как глубина фокуса по скорости всегда больше. В масс-спектрометре с двойной фокусировкой положения фокуса направления и скоростей совпадают. Если из-за ошибок при конструировании или эффектов второго порядка пересечение не произойдет в рассчитанной точке, оно осуществится вблизи нее, тогда как в случае приборов, обеспечивающих двойную фокусировку всех масс, линии фокусов могут смещаться, но остаются параллельными. [c.24]

    Преимуществом циклоидального масс-спектрометра является то, что необходимо иметь лишь две точно установленные щели (они должны быть копланарны в эквипотенциальной плоскости). Если прибор используется как масс-спектрограф, то линейность шкалы масс соблюдается, так как А пропорционально т (см. уравнение 6). [c.31]

    Точная установка спектроскопа в масс-спектрометрии так же важна, как и в масс-спектрографии, однако нововведения, сделанные группой Нира, работающей в Миннеаполисе, облегчили эту работу использованием умножителя в качестве детектора [742, 1645]. Поскольку чувствительность умножителя очень велика, то постоянные времени связанной с ним электрической схемы должны быть очень малы. Для питания катушек электромагнита используется переменное напряжение, имеюш,ее пилообразную форму импульсов и частоту около 30 гц. Оно же одновременно подается на горизонтальные. Х-пластины катодного осциллографа. Развертка ионного пучка, проходящего выходную щель, осуществляется изменением магнитного поля через определенные интервалы. Ионный ток после усиления поступает на вертикальные У-пластины осциллографа таким образом, что только небольшая часть спектра, порядка одного или двух массовых чисел, появляется на экране. Благодаря этому возможно оценить величину сигнала, ширину и форму пика, что ускоряет процесс настройки и его контроль, а также обеспечивает лучшее понимание эффектов каждой настройки. [c.53]


    Как было упомянуто в гл. 2, расхождение между вычисленными физическими и измеренными химическими атомными весами элементен вызвано трудностью точного измерения изотопных отношений для элементов,содержащих распространенные изотопы. Трудности, присущие измерению отношения двух изотопических пиков, сильно отличающихся по интенсивности, увеличиваются, если последние образуются не одним соединением. В этом случае ограничиваются получением воспроизводимых отношений. Абсолютные отношения измеряются редко чаще всего необходимо добиться лишь высокой чувствительности, даже при измерении разницы в распространенностях изотопов. Имеется много факторов, вызывающих случайные и систематические ошибки в определении распространенности. Вначале рассматриваются ошибки, имеющие место при масс-спектрографических определениях 11334], а затем возможные ошибки в масс-спектрометрии. Масс-спектрограф не может конкурировать с масс-спектрометром в измерении относительной распространенности. В самом деле, образцы, изученные на масс-спектрометре, использовались для калибровки масс-спектрографов при исследовании распространенности изотопов. Так как масс-спектрографы широко применялись в прошлом для измерений распространенности изотопов и используются сейчас при элементарном анализе нелетучих твердых тел в искровых ионных источниках, то имеет смысл прежде всего рассмотреть ошибки, возникающие при фотографическом методе регистрации. [c.72]

    Другим возможным источником ошибки в спектрографических определениях является дискриминация, возникающая вследствие различных траекторий движения ионов разных масс. Ошибка может быть внесена и при калибровке фотопластинки. Воздействие света или рентгеновских лучей на пластинки отличается от воздействия положительных ионов [76]. Поэтому при калибровке обычно используется образец с известным изотопным составом, и линии эталонного и изучаемых образцов возникают на пластинке одновременно. Например, медь (которая обладает изотопами с массами 63 и 65) изучали в присутствии цинка. Относительная распространенность изотопов цинка была определена ранее на масс-спектрометре, и эти данные использовали для калибровки каждой экспозиции в интересующем диапазоне шкалы масс. Точность, достигаемая при подобных измерениях, равна 0,3%. Относительное содержание нескольких изотопов в элементе, используемом в качестве калибровочного, как это у называлось выше, может быть установлено непосредственно при помощи большого числа экспозиций различной продолжительности. Для линии данного изотопа строится кривая почернения, и путем сопоставления времени, необходимого для получения определенной плотности линий различных изотопов, устанавливается их относительная распространенность. Боль- шинство элементов впервые было исследовано этими двумя методами. Ошибки возникают из-за нелинейной зависимости между почернением и экспозицией, а также из-за неравномерной плотности линий на пластинке. Это связано с трудностью оценки интегральной экспозиции, когда почернение не является ее линейной функцией. Чувствительность фотопластинок, используемых в масс-спектрографии, изменяется даже по длине данной пластинки. Для того чтобы, обнаружить и исключить ошибки, вызываемые этим фактором, для каждого спектра обычно несколько раз повторяют экспозиции. [c.73]

    Однородность формы пучка является также важным требованием при масс-спектрометрическом определении распространенности. Важно также уменьшить случайные изменения в положении пучка вследствие недостаточной стабилизации потенциалов в приборе. При электрической регистрации изменения интенсивности пучка во времени крайне нежелательны, так как при этом методе весь спектр не измеряется одновременно. Это приводит к необходимости использовать в масс-спектрометрии лишь такие ионные источники, которые обеспечивают стабильный поток положительных ионов, и препятствует применению таких источников, как источник с горячей искрой (которые могут быть использованы в масс-спектрографах). Применение последних возможно только с одновременной регистрацией двух или более массовых пиков на отдельных коллекторах с непрерывным измерением отношений или с непрерывным внесением поправки на колебания, вызываемые источником [776]. [c.73]

    Рассмотренные выше методы непрерывной идентификации предусматривают съемку масс-спектра во всем диапазоне массовых чисел при помощи динамического масс-Спектрометра или масс-спектрографа. Одновременно с этим методом развивался метод, основанный на непрерывной регистрации ионного тока, соответствующего определенному отношению массы к заряду величину [c.292]

    МАСС-СПЕКТРОМЕТРЫ И МАСС-СПЕКТРОГРАФЫ С КОРРЕКЦИЕЙ АБЕРРАЦИЙ ИЗОБРАЖЕНИЯ [c.26]

    Масс-спектрометры и масс-спектрографы с коррекцией аберраций [c.27]

    Все рассмотренные до сих пор примеры, согласно данному выше определению, относятся к масс-спектрометрам. В масс-спектрографах, в которых двойная фокусировка первого порядка осуществляется для ионов всех масс на прямой липни, входная щель прибора помещается в фокусе электростатического поля, ионные траектории образуют параллельный пучок в области между обоими полями, а входная граница магнитного поля и фокальная линия представляют прямые линии, пересекающиеся в точке входа центрального ионного луча в магнитное поле. Вследствие этого должны выполняться условия [c.35]

    Сначала представляло интерес точное определение относительных количеств этих изотопов. Фотографический метод, использовавшийся тогда в масс-спектрографах для измерения масс изотопов, не отвечал требованиям точных определений относительных количеств изотопов, и в результате попыток преодолеть это затруднение был создан масс-спектрометр с электронной регистрацией. По мере развития работ с этим прибором стало ясно, что вещества, более слоншые, чем элементы, иоинзируются, образуя характерные заряженные осколы . Систематическая разработка этих вопросов привела I тому, что масс-спектрометрия стала изящным методом качественного и количественного анализа органических соедине-тт. [c.335]

    Начало развитию М.-с. положено опытами Дж. Томсона (1910), исследовавшего пучки заряженных частиц, разделение к-рых по массам производилось с помощью электрич. и магн. полей, а спектр регистрировался на фотопластинки. Первый масс-спектрометр построен А. Демпстером в 1918, а первый масс-спектрограф создал Ф. Астон в 1919 он же исследовал изотопич. состав большого числа элементов. Первый серийный масс-спектрометр создан А. Ниром в 1940 его работы положили начало изотопной М.-с. Прямое соединение масс-спектрометра с газо-жидкостным хроматографом (1959) дало возможность анализировать сложные смеси летучих соед., а соединение с жидкостным хроматографом с помощью термораспылит. устройства (1983)-смеси труднолетучих соединений. [c.658]

    Масс-спектрометрия (масс-спектрография, масс-спектроскопия) — метод исследования вещества по спектру (набору) масс атомов и молекул, входящих в его состав. Метод заключается в том, что ионизированные атомы и молекулы вещества разделяют в электрических и магнитных полях по величине отношения массы к заряду иона (mie) и раздельно регистрируют на соответствующих приборах (масс-спект-ро.метрах). Из полученного масс-спектра находят величины масс и относительное содержание компонентов в исследуемом веществе. М.-с. применяют для точного определения масс ядер, анализа изотопного и химического состава вещества, уста-навлении структуры молекул и др. [c.80]

    Проведенные Томсоном исследования [99] положительно заряженных пучков ионов, приведшие к разделению изотопов химических элементов, были продолжены Астоном [б], который создал первый масс-спектрограф и определил изотопный состав различных соединений фотографическим методом. Примерно в тот же период были разработаны методы определения относительной распространенности изотопов Демпстером [23] и другими исследователями, особенно Ниром [76], которому удалось значительно повысить точность и надежность масс-спектрометра. [c.5]

    Фотографическая пластинка, имеющая определенные достоинства, непригодна для измерения количества ионов, вследствие чего прибор для измерения с достаточной точностью масс ионов и интенсивностей]их пучков не мог быть разработан до усовершенствования электрических детекторов. Современные радиотехнические достижения позволили настолько повысить чувствительность масс-спектрометров, что оказалось возможным считать отдельные положительные ионы. Благодаря этому масс-спектрометрист имеет возможность проводить исследования, ранее ему недоступные из-за недостаточной интенсивности ионного пучка и использовать опыт масс-спектрографистов в ряде усовершенствований. По этой причине необходимо одновременно рассматривать развитие не только масс-спектрометрии, но и масс-спектрографии. В настоящее время масс-спектрометр может быть использован почти во всех областях анализа положительных ионов, хотя в ряде случаев фотографическое детектирование не потеряло своего значения. Например, недавно были описаны промышленные масс-спектрографы для элементарного анализа твердых веществ. Область, включающая масс-спектрометрию и масс-спектрографию, объединяется под общим названием масс-спектроскопия. [c.13]

    В 1933 г. Барбером [121] и более детально Стефенсом [1929, 1930] было показано, что действие линзы при 180-градусном отклонении в однородном магнитном поле является частным случаем фокусирующего действия любого клинообразного магнитного поля. Если центр кривой ионного пучка, проходящего через магнитное поле, совпадает с вершиной клина, т. е. пучок ионов входит и выходит из поля под прямым углом к его границе, и если пучок однороден по массе и энергии, то он фокусируется на линии, соединяющей точку образования ионов и вершину клинообразного магнитного поля, как это показано на рис. 4. Отношение дисперсии по массам к уширению изображения, вызываемому несовершенством фокусировки, достигает максимума при sin 6 = = 2sin ф, следовательно, теоретически максимальное разрешение достигается при этом асимметрическом построении. Однако ожидаемое улучшение незначительно и не компенсирует трудности, связанные с установкой масс-спектрометрической трубки и увеличением траектории ионов. Поэтому обычно используют симметричные приборы с простой фокусировкой. Теоретическая характеристика симметричного прибора не зависит от угла сектора прибор Демпстера представляет особый случай, когда секторный угол равен 180°. В течение ряда лет после выхода статей Барбера и Стефенса масс-спектрометры секторного типа не конструировались (хотя 60-градусные секторные магнитные поля использовались в масс-спектрографах с двойной фокусировкой [112]) и продолжалось использование 180-градусных приборов [1490, 1491, 1762]. [c.21]

    Из других ранних конструкций масс-спектрографов следует отметить приборы Демпстера [460, 461] и Бейнбриджа и Джордана [112, 113]. Демпстер использовал в приборе отклонение на 180° в магнитном поле, примененное им в своем первом масс-спектрометре. Магнитному полю предшествовало 90-градусное радиальное электростатическое поле. Для осуществления двойной фокусировки отношение ге/г должно было быть равным 0,873. Другие параметры, которые должны быть выдержаны для осуществления фокусировки, приведены в масштабе на рис. 8. Дакворт [532, 533] построил прибор конструкции Демпстера с разрешающей способностью 7000 при ширине входной щели [c.26]

    Масс-спектрометр с двойной фокусировкой и радиусом 250 см был описан Стивенсом и сотрудниками [465] большой масс-спектрограф с двойной фокусировкой разработан Хинтенбергером и сотрудниками [253]. Бейнбридж и Мореланд [22] сообщают о спектрометре, использующем метод сравнения пиков Гизе и Колинза для определения изотопных отношений. Эвальд [164] описал масс-спектрограф для анализа частиц с высокой кинетической энергией. Описание электромагнитного сепаратора для разделения изотопов дано [c.652]

    Основной недостаток динамических масс-спектрометров как хроматографического детектора заключается в сравнительно низ-. ком качестве измерения отношений интенсивностей линий, получаемых при быстрой съемке спектра, и относительно низкой чувствительности. Эти недостатки были исключены при использовании в комбинации с хроматографом масс-спектрографа высокого разрешения [69, 110]. На одной плa тинI e можно зарегистрировать до 60 спектров, что позволяет расшифровать довольно сложную смесь. При этом для каждого хроматографического пика получают наиболее полную масс-спектрометрическую информацию. [c.292]

    В первом разделе рассматриваются масс-спектрометры и масс-спектрографы с большо11 разрешающей силой. Во втором разделе собраны доклады, посвященные масс-спектрометрическому анализу веществ в твердом состоянии (анализ изотопного состава лития, свинца и кадмия изучение поверхностной ионизации серебра и меди количественный и качественный анализ примесей в сталях, магнии, алюминии, меди, графите и кремнии). Большое место занимает раздел Применение масс-спектрометров в органической химии анализ тяжелых нефтяных масел, анализ коррозионно-активных газов на атомных предприятиях. Ряд докладов посвящен теоретическому истолкованию масс-спектров сложных органических соединений. [c.4]

    Джеймс. Мы применяем масс-спектрометр к тем проблемам, которые не могут быть решены методом обычной оптической спектрографии. Основное различие меиоду оптическим спектрографом и масс-спектрографом заключается в чувствительностях к металлам и полуметаллам такие элементы, как сурьма, мышьяк, сера, очень хорошо обнаруживаются масс-спектрометром. Основное неудобство в использовании масс-спектрометра состоит в большой продолжительности анализа. [c.163]

    А9. Неменов Л. М., Федюрко А.С., Конструкция и устройство масс-спектрографа. (Металлический] масс-спектрометр типа Астона.) IKT , 9, 1879 — 1882 (1939). [c.575]


Смотреть страницы где упоминается термин Масс-спектрограф спектрометр: [c.308]    [c.477]    [c.777]    [c.778]    [c.668]    [c.26]   
Происхождение жизни Естественным путем (1973) -- [ c.47 , c.49 , c.51 , c.62 , c.122 , c.123 , c.209 , c.217 ]




ПОИСК





Смотрите так же термины и статьи:

Масс-спектрограф

Масс-спектрограф спектрография

Масс-спектрограф спектрометрия

Масс-спектрограф спектрометрия

Масс-спектрография

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

Спектрограф

Спектрография



© 2025 chem21.info Реклама на сайте