Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серебро ионизации

    Активационная поляризация определяет также кинетику осаждения или растворения металла. Она мала для таких металлов, как серебро, медь, цинк, но возрастает для металлов переходной группы, например железа, кобальта, никеля, хрома (см. табл. 4.1). Природа анионов электролита больше влияет на перенапряжение процессов разряда и ионизации металла, чем на реакцию выделения водорода. [c.53]


    Серебро. По своим электрохимическим свойствам серебро относится к группе металлов с весьма низким перенапряжением разряда и ионизации металла и высоким перенапряжением водорода. В связи с этим очень трудно получить плотные катодные осадки серебра из его простых солей, они выделяются в виде дендритов, губки, игл, но с высоким выходом по току. [c.316]

    Атомы всех трех элементов имеют малый радиус и относительно большую энергию ионизации, а поэтому химически мало активны. Медь, серебро и золото в ряду напряжений стоят справа от водорода.  [c.103]

    Атомные радиусы элементов подгруппы меди невелики / (- =128 пм Лд = / д = 144 пм. (Для сравнения укажем радиусы атомов щелочных металлов, находящихся в четвертом, пятом и шестом периодах, как и элементы подгруппы меди Г = 236 пм, Гр.[,==248 пм / 05 = 268 пм. Поэтому медь, серебро и золото имеют высокие значения энергий ионизации. [c.226]

    Следует еще раз отметить, что чем более активен металл как восстановитель, тем менее он активен в состоянии иона как окислитель. И наоборот, чем менее активен металл как восстановитель, тем более он активен в состоянии иона как окислитель. Например, при переходе нейтральных атомов калия и серебра в ионное состояние К и Ад+ потенциалы ионизации соответственно равны 415,6 и 724,5 кДж. Поэтому ион серебра Ад" " обладает значительно большим сродством к электрону, чем ион К" ", так как энергия, выделяющаяся при присоединении электрона к положительному иону, равна энергии ионизации с обратным знаком. [c.124]

    Потенциал ионизации / серебра равен 7,574 В, стандартный окислительно-восстановительный потенциал Ад+/А . = = - -0,799 В. Положительно заряженный ион Ад" " обладает большим сродством к электрону, так как энергия, выделяющаяся при присоединении электрод(а к положительному иону, равна энергии ионизации с обратным знаком. Поэтому положительно заряженный ион А + является сильным окислителем. Ион N05 в данных условиях ни окислительных, ни восстановительных свойств проявлять не может. [c.146]

    Наличие 18-электронной оболочки и более высокий заряд ядра у элементов побочной подгруппы приводит к эффекту сжатия электронных оболочек, вследствие чего радиусы атомов меди, серебра и золота меньше радиусов щелочных металлов, а их потенциалы ионизации выше. Этим можно, в частности, объяснить тот факт, что медь, серебро и, особенно, золото трудно окислить, а положительно заряженные ионы этих элементов обладают окислительными свойствами. [c.232]


    Во многих практических случаях электролиза поляризация заметно осложняет течение желаемых электродных процессов. Поляризация возрастает в зависимости от плотности тока, поэтому на преодоление торможения электродной реакции тратится значительное количество электроэнергии. Например, в случае электрорафинирования меди при среднем напряжении на клеммах 0,28 в около 21% этой величины приходится на поляризацию. При этом электроосаждение таких металлов, как медь, цинк, кадмий, серебро и ртуть, из растворов их простых солей сопровождается относительно небольшой, главным образом концентрационной поляризацией. Значительно труднее протекают процессы разряда и ионизации металлов группы железа. Особенно большой поляризацией сопровождаются разряд ионов водорода, а также окислительно-восстановительные реакции, протекающие на инертных электродах в электролитных ваннах. [c.242]

    Как видно из рис. 111-64, при расщеплении атомного энергетического уровня почв-ляются подуровни с энергиями не только меньшими, но и большими исходной. Вырывание электрона с самого верхнего заполненного подуровня валентной зоны должно, следовательно, происходить легче, чем с исходного атомного уровня. Этим и обусловлено существенное уменьшение работы выхода электрона из металла по сравнению с ионизацией отдельного атома того же элемента. Например, ионизация атома Ад требует затраты 7,6 эв, а работа выхода электрона из металлического серебра составляет 4,7 эв. [c.112]

    В. Латимер для иллюстрации важности учета различных факторов в определении потенциала привел пример реакции ионизации натрия и серебра в водной среде  [c.88]

    Серебро ионизируется труднее, что естественно связать с его большим потенциалом ионизации. Однако, сопоставив энтальпии [c.88]

    Надо заметить, что свойства серебра не являются промежуточными между свойствами меди и золота — это можно видеть уже при сопоставлении первого и второго потенциалов ионизации и температуры плавления металлов, их электрической проводимости, а также ряда химических свойств (низкая растворимость галогенидов серебра, окислительная активность неустойчивого оксида и др.). Серебро во многих отношениях похоже на палладий, т. е. на своего соседа по периоду. [c.204]

    Металлы 1Б группы характеризуются высокой энергией металлической связи и высокими энергиями ионизации и, следовательно, относительно низкой химической активностью. Причем медь более активна, чем серебро. Медь непосредственно взаимодействует с кислородом, серой и галогенами, образуя соединения меди (II)  [c.26]

    Наиболее благоприятные условия для образования твердых растворов замещения — близкие атомные радиусы обоего рода атомов и одинаковые кристаллические решетки (изоморфность компонентов) у обоих компонентов. Важно, чтобы элементы были близко расположены друг к другу в периодической системе, лучше в одной группе с одинаковым числом валентных электронов, с малым различием потенциалов ионизации и электроотрицательности. Мы знаем уже, что такие твердые неограниченные растворы образуют серебро и золото (г = = 1,44 А у обоих металлов), кремний и германий (rsi = 1,17 А, гое = = 1,22 А). Ограниченные твердые растворы образуются при различии радиусов до 15% (по Юм-Розери). Например, цинк (г = 1,37 А) в меди г = 1,28 А) растворяется до 38,4 ат. %, а кадмий —только до 1,7 ат.% (г = 1,54 А). [c.141]

    Металлы, термодинамически стойкие по отношению к процессу электрохимической коррозии с выделением водорода, могут оказаться нестабильными при наличии кислорода, ионизация которого происходит при более положительных потенциалах. В таком случае говорят о коррозии с кислородной деполяризацией. Область потенциалов, при которых становится возможной ионизация кислорода, расположена выше прямой d. Только совсем немногие металлы — золото, серебро, платина и некоторые другие — обладают стабильностью по отношению к коррозии кислородного типа. [c.243]

    Как следует из уравнения (9), вещество электрода, теряя электроны, может анодно растворяться (подвергаться ионизации) и таким образом участвовать в электрохимической реакции. Анодное растворение вещества (ионизация) металлического электрода наиболее широко представлено в процессах электролитического рафинирования цветных и благородных металлов. Так, например, в электрохимической системе, содержащей в качестве электролита подкисленный раствор нитрата серебра с погруженными в него двумя серебряными электродами [c.21]

    Помимо приведенного примера ионизации серебра, к этой группе анодов относят медные, цинковые, кадмиевые, никелевые и другие металлические растворимые аноды. [c.22]

    Электроосаждение и ионизация таких металлов, как медь, цинк, кадмий, серебро, ртуть, из растворов их простых соЛей сопровождаются относительно небольшой, главным образом концентрационной поляризацией. Значительно труднее протекают процессы разряда и ионизации металлов группы железа. Особенно большой поляризацией (перенапряжением) сопровождаются разряд ионов водорода, а также окислительно-восстановительные реакции, протекающие на инертных электродах. [c.274]


    Способность посылать ионы в раствор у различных металлов выражена неодинаково. При одинаковых условиях она зависит от энергии сублимации металла, энергни ионизации его атомов и энергии гидратации ионов. Чем меньше энергия сублимации и энергия ионизации и чем больше энергия гидратации, тем выше способность металла посылать ионы в раствор и тем ниже его равновесный потенциал. Из таких пассивных металлов, как медь, серебро, выход ионов в раствор почти не происходит. Поэтому, например, для медного электрода, погруженного в раствор соли меди, преобладает адсорбция ионов металла на поверхности электрода. Схематично процесс можно изобразить следующим образом  [c.238]

    Серебро. По своим электрохимическим свойствам серебро относится к группе металлов с очень низким перенапряжением разряда и ионизации металла (см. табл. 4.2). В связи с этим трудно получить плотные катодные осадки серебра из его простых солей оно выделяется в виде дендритов, губки, игл, но с высоким выходом по току. Из-за малого перенапряжения при не слишком высоких плотностях тока реакции растворения и разряда серебра протекают при потенциалах, близких к равновесному. Возможные примеси — золото, платиноиды, медь, сурьма, висмут, олово, селен и незначительные количества цинка, кадмия, никеля, железа — ведут себя в соответствии с их [c.431]

    Рассмотрите изменение атомных радиусов, энергий ионизации, сродства к электрону и электроотрицательности в ряду Си - Аи. Почему радиус атома меди (Z=29) меньше радиуса атома калия (Z=19) Почему радиусы атомов серебра (Z=47) и золота (Z=79) практически одинаковы  [c.140]

    Для этой цели подходят металлы, ионизация и разряд ионов которых происходит с низкой поляризацией (обычно серебро или медь). Напряжение на хемотроне в процессе переноса сохраняется поэтому низким до тех пор, пока на первом электроде остается металл М. Когда весь металл М окажется перенесенным с первого электрода на второй, на металле — основе электрода I должен начаться другой процесс, идущий при более положительном потенциале, а потенциал электрода И смещается в отрицательную сторону. Напряжение на хемотроне резко возрастает, что указывает на конец интегрирования. При перемене полярности процесс накопления информаши может быть продолжен. Так как количестао перенесенного металла М известно, а анодный и катодный процессы протекают со 100%-ным выходом по току, то по закону Фарадея можно определить количество прошедшего электричества. При введении в хемотрон третьего электрода появляется возможность промежуточного считывания величины интеграла. [c.386]

    Следовательно, присутствие серебра ы цинке должио увеличить скорость его коррозии. При выбранных условиях эта скорость возрастает в три с половиной раза. Однако увеличение скорости растворения не является единственным результатом загрязнения цинка серебром. Меняется и сам харакгер коррозии. Действительно, если раньше весь водород выделялся на поверхности цинка, т. е. на той же самой поверхности, где пр(Эисходило растворение (ионизация) цинка, то теперь, как это легко определить при помощи уравнения (24.23), только 28% водорода выделяется на цинке, а остальные 72% — на серебре. Серебро, обладая электроположительным потенциалом, не будет растворяться на нем возможен [c.495]

    Малый радиус атомов объясняет также более высокие значения энергии ионизации металлов этой подгруппы, чем н[елоч 1ых метал. юв. Это приполит к большим различиям в химических свс)й-стлах металлов обеих подгрупп. Элементы подгруппы меди — малоактивные металлы. Они с трудом окисляются и, наоборот, нх ионы легко восстанавливаются они не разлагают воду, гидроксиды их являются сравнительно слабыми основаниями. В ряду напряжений они стоят после водорода. В то же время восемнадцатиэлектронный слой, устойчивый у других элементов, здесь еще пе вполне стабилизировался и способен к частичной потере электронов. Так, медь наряду с однозарядными катионами образует и двухзарядные, которые для нее даже более характерны. Точно так же для золота степень окисленности -)-3 более характерна, чем -f-1. Степень окисленности серебра в его обычных соедннен[ их равна - -1 однако известны и соединения со степенью окисленности серебра -j-2 и +3. [c.570]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Большое значение релятивистские эффекты имеют для элементов побочных подгрупп. Давно известно, что химические и физические свойства золота сильно отличаются от свойств меди и серебра. Часто такие отличия носят название аномалии Аи . Например, большинство координационных соединений Аи (I) имеет координационное число 2, в то время как Ag (I) и Си (I) имеют тенденцию к большим значениям. Золото имеет значение 1 значительно большее, чем серебро, и связано это с релятивистским сжатием бв-подоболочки. Это объясняет низкз ю восстановительную активность золота, а также существование аурид-иона Аи в таких соединениях, как СзАи или КЬАи. Серебро такие соединения уже не образует. Сжатие валентной 6в-А0 золота также увеличивает прочность и уменьшает длину его связей в соединениях. Вторая энергия ионизации золота Е 2 меньше, чем у серебра, что связано с релятивистским расширением 5 -подоболочки. Поэтому проявление в соединениях золота более высоких степеней окисления, чем у меди и серебра, связано с меньшими энергетическими затратами для участия в этом 5й-электронов. Желтый цвет золота связан с релятивизмом. Вследствие небольшого энергетического различия между сжатым [c.86]

    В электрохимических преобразователях на основе фазовых переходов на электродах используют процессы катодного осаждения и анодного растворения металлов (меди, серебра и др.) на инертных электродах или электродах из того же металла процессы восстановления или образования пленок солей или окислов (Ag l-f ё -> Ag+ l- d (0Н)2+ +2e->- d- -20H и др.) процессы выделения и ионизации водорода и др. Приведем некоторые примеры хемотронов данного типа. В качестве электрохимических счетчиков машинного времени используют малогабаритные кулонометры. Трубку из прозрачного материала заполняют двумя столбиками ртути, разделенными столбиком электролита. С обоих концов трубку герметично закрывают. Прибор включают в цепь питания контролируемого оборудования так, чтобы через [c.224]

    Рассчитайте стандартный электродный потенциал се- ребра, воспользовавшись следующими энтальпиями энтальпия сублимации (атомизации) серебра АЯ°субл = 280 кДж/моль, энтальпия ионизации атома серебра ДЯ°иониз = 728 кКж,/моль, энтальпия гидратации газообразного иона Ag+ АЯ°гидр = = —467 кДж/моль.  [c.260]

    Различия связаны с тем, что ряд электродных потенциалов учитывает дополнительные процессы, связанные с гидратацией ионов. Так, образование иона Н+ из атома Н совершенно невыгодно (потенциал ионизации Н- Н+, = 13,6 эВ больше, чем потенциалы ионизации хлора, 1 13,1 эВ серы, =10,4 эВ углерода, 1 =11,3 эВ и равен потенциалу ионизации кислорода. У=13,6 эВ, потенциалы ионизации серебра и меди ниже, чем потенциалы ионизации гораздо более активр ых железа и цинка), ио в энергетику образования иона в растворе входит энергия, выделяющаяся в процессе образования связей в гидратах  [c.224]

    Для меди наиболее характерно окислительное число +2 (чаще) и +1, для серебра +1, для золота +3(чаще) и +1. Пока достраивается (л—1) -подуровень в предшестаующих элементах больших периодов, их атомные радиусы сравнительно мало изменяются, поэтому у меди, серебра и золота атомные радиусы значительно меньше, чем у калия, рубидия и цезия. Заряд ядра меди и серебра на 10 единиц больше, чем у калия и рубидия, а золота на 24 единицы больше, чем цезия. В связи с этим прочность связи внешних электронов у элементов подгруппы меди значительно больше, чем у калия, рубидия, цезия и потенциалы ионизации намною выше (см. табл. 3), особенно у золота (9, 22 в). В результате у элементов подгруппы меди небольшая химическая ак- [c.354]

    Взяв вращающиеся электроды, у которых диски сделаны из различных серебряных сплавов, получаем аналогичные зависимости в тех же координатах /к — /д , но здесь /д" — парциальный анодный ток по серебру на диске, который рассчитывается теоретически в предположении, что растворение ннтерметаллической фазы (сплава) идет равномерно. Если разрушение диска происходит с ионизацией обоих компонентов в соответствии с химическим составом сплава, то полученная зависимость в пределах ошибки опыта (5—8%) совпадает с кривой 1 (рис. 133). При селективном разрушении сплава, т.-е. когда серебряная составляющая частично ионизируется или полностью не растворяется, полученные кривые 2, 3, 4 располагаются ниже кривой 1. Отношение ординат при каждой плотности тока /д дает долю ионизировавшегося благородного компонента. Для определения парциальной силы анодного тока следует воспользоваться уравнением (8.59). После этого нетрудно рассчитать процент ионизировавшегося благородного компонента. Для того чтобы убедиться, что константа k реакции осаждения ионов серебра на диске равна нулю, зависимости /к — получаются при разных скоростях вращения электрода. Они должна быть одинаковыми. [c.237]

    Рассчитайте стандартный электродный потенциал серебра, воспользовавщись следующими энтальпиями энтальпия сублимации (атомизации) серебра ДЯ убл = 280 кДж/моль, энтальпия ионизации атома серебра = 728 кДж/моль, энтальпия гидратации газооб- [c.376]

    Для меди наиболее характерна степень окисления + 2 (чаще) и +1, для серебра +1, для золота -ьЗ (чаще) и -Ы. Пока достраивается (п—1)й -подуровень в предшествующих элементах больших периодов, их атомные радиусы сравнительно мало изменяются, поэтому у меди, серебра п золота атомные радиусы значительно меньше, чем у калия, рубидия и цезия. Заряд ядра меди и се])ебра на 10 единиц больше, чем у калия и рубидия, а золота на 24 единицы больше, чем цезия. В связи с этим прочность связи внешних электронов у элементов подгруппы меди значительно больше, чем у калия, рубидия, цезия, и потенциалы ионизации намного выше (см. табл, 3), особенно у золота (9, 22 В). В результате у элементов подгруппы меди небольшая химическая активность (особенно у золота, на котором сказывается еще и влияние лантаноидного сжатия). Стандартные электродные потенциалы у них положительные (см. табл. 16). [c.442]

    Когда бактерицидные свойства серебра былк изучены, оказалось, что решающую роль здесь играют не атомы, а положительно заряженные ионь Аё. (Напомню читателям, что ионизация, рассмотренная в главе 1, повышает активность веществ в водных растворах.) Катионы серебра подавляют деятельность фермента, обеспечивающего кислородный обмен у простейших микроорганизмов, иными словами, душат болезнетворные бактерии вирусы, грибки (в этом смертельном списке порядка 700 видов патогенной флоры и фауны ) Скорость уничтожения зависит от концентрации ионов серебра в растворе так, кишечная палочка погибает через 3 мин при концентрации 1 мг/л, через 20 мин — при 0,5 мг/л, через 50 мин — прк [c.54]

    Каждому платиновому элементу, золоту и серебру посвящена глава, в которой рассмотрены сведения о свойствах реагентов (функциональноаналитическая группа, растворимость в различных растворителях), длина волны спектра поглощения, температура плавления, константы ионизации). Для каждой системы Ме — реагент приведены оптимальные условия реакции комилексообразовання, экстракции, фотометрирования, соотношение реагирующих компонентов, интервал подчинения растворов комплекса закону Беера, допустимые количества посторонних анионов, катионов и веществ при определении данного благородного элемента, пропись выполнения определения. В случае анализа конкретных объектов дано псйпное описание перечня реактивов, хода анализа и величины относительной погрешности метода. [c.3]


Смотреть страницы где упоминается термин Серебро ионизации: [c.65]    [c.655]    [c.12]    [c.88]    [c.236]    [c.143]    [c.178]    [c.339]    [c.674]    [c.186]    [c.38]    [c.289]   
Аналитическая химия серебра (1975) -- [ c.11 ]




ПОИСК







© 2025 chem21.info Реклама на сайте