Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элюирование при изменении

    Наибольшим достоинством жидкостной хроматографии является градиентное элюирование — изменение состава элюента во времени, позволяющее разделять смеси различной полярности за счет изменения коэффициента распределения. Градиентное элюирование можно рассматривать как аналог программирования температуры в газовой хроматографии. [c.204]

    Полезное введение в методику моделирования дано в монографии [115]. Интересные примеры применения различных методов моделирования публикуются также в литературе по аналитической химии. В частности, в гл. 4 монографии [114] рассматривается использование в исследовании химической кинетики очень популярного и хорошо известного метода Монте-Карло. Авторы публикаций, в которых обсуждаются достоинства метода моделирования, как правило, сами пользуются им. Так, авторы статьи [117] продемонстрировали роль компьютерного моделирования в исследованиях факторов, определяющих оптимальный режим работы высокоэффективного жидкостного хроматографа, предназначенного для препаративного разделения в данном случае при помощи компьютерного моделирования изучалось влияние на элюирование изменения числа теоретических тарелок в хроматографической колонке. Авторы статей [118— 120] интенсивно изучали применение моделирования в дифференциальной импульсной полярографии как выяснилось, в результате моделирования можно предсказать форму полярографического пика и его положение как функции экспериментальных переменных, таких, как высота и длительность импульса и время спада. В этом примере метод моделирования позволяет аналитику осуществить выбор и оптимизацию экспериментальных условий без проведения длительных эмпирических исследований. [c.392]


    При хроматографии на иммобилизованных лектинах можно выбрать либо неспецифическое элюирование (изменение pH или концентрации соли), либо любой специфический метод (например, вытеснение адсорбированного гликопротеина конкурирующими углеводами). [c.121]

    Все рассмотренные детекторы чувствительны к изменению скорости потока, что требует соблюдения ее постоянства при элюировании. [c.97]

    Из этого соотношения, в частности, вытекает, что последовательность расположения секций влияет на общее удерживание сорбатов. В некоторых случаях при изменении порядка расположения секций может измениться даже порядок элюирования компонентов смеси. В качестве примера на рис. VI.2 приведены хроматограммы смесн углеводородов, полученные в работе [17]. [c.176]

    Зависимость удерживаемых объемов от температуры имеет большое практическое значение. Так, при изменении температуры колонки изменяется порядок выхода компонентов смеси. При температурах колонки, соответствующих областям а, а", а ", происходит совмещение максимумов пиков индивидуальных веществ. В области температур Ь первым выходит компонент 1, затем компоненты 2, 3 а 4. При температуре с происходит инверсия порядка элюирования компонентов 3 и 4. При температуре й первым вымывается компонент 4, затем 1, 3, 2. [c.83]

Таблица 17.3. Селективность а (относительно бензола) и относительные изменения свободной энергии Д(ДО) на силанизированном силикагеле при элюировании раствором воды с изопропанолом (4 1) при 50°С Таблица 17.3. Селективность а (<a href="/info/739814">относительно бензола</a>) и относительные <a href="/info/12282">изменения свободной энергии</a> Д(ДО) на силанизированном силикагеле при <a href="/info/490747">элюировании раствором</a> воды с изопропанолом (4 1) при 50°С
    При изменении концентрации сорбентов в направлении движения подвижной фазы, так же как и в случае градиентного элюирования, наблюдают появление четких пятен. [c.360]

    Метод газовой хроматографии основан на способности веществ сорбироваться тем или иным сорбентом и затем без каких-либо изменений смываться с сорбента — элюироваться. Разные вещества по-разному сорбируются одним и тем же сорбентом — одни лучше, другие хуже одни прочнее удерживаются на поверхности сорбента, другие — слабее. Поэтому при элюировании одни вещества будут вымываться медленнее, другие быстрее причем для каждого вещества в воспроизводимых условиях время, за которое оно будет элюировано с сорбента, будет определенным — характерным для этого вещества и данного сорбента. Это время носит название времени удерживания (туд). Пользуясь тем, что все компоненты смеси обладают разным временем удерживания, мож- [c.241]


    На интегральной хроматограмме (рис. 16, б) изменение нулевой линии, вызванное элюированием компонента, называют ступенью, а разность между высотами двух последовательных нулевых линий — высотой ступени/г". [c.41]

    Однако наиболее часто применяют ион-парную хроматографию на обращенной фазе, при которой в качестве подвижной фазы используют водный буферный раствор и органический растворитель, смешивающийся с водой, обычно метанол или ацетонитрил. В подвижную фазу добавляют противоион, заряд которого противоположен заряду молекулы, а в качестве сорбента используют силикагель с химически привитой фазой, обычно Се или i8. Иногда разделение осуществляют с применением несмешиваемой с водой механически удерживаемой фазы, например, бутанола. При разделении на обращенной фазе более стабильной, чем механически удерживаемая фаза, водные образцы могут непосредственно вводиться в колонку, что особенно важно для анализа биологических образцов. При этом нет необходимости в предварительной очистке, так как гидрофильные компоненты мгновенно вызываются из колонки. Градиентное элюирование проводят, изменяя концентрацию противоиона в подвижной фазе или меняя полярность растворителя. При изменении концентрации противоиона, который остается в неподвижной фазе, изменяется сила растворителя, а при изменении pH подвижной фазы изменяется селективность разделения. [c.75]

    Точные количественные измерения проводят в изократическом режиме. Градиентное элюирование применяют, когда провести изократическое разделение невозможно. Хотя при градиентном режиме получают воспроизводимые результаты, но при градиентном элюировании иногда наблюдается смещение базовой линии и появление ложных пиков из-за наличия в растворителях воды. Кроме того, градиентное элюирование удлиняет время анализа. При количественном анализе в режиме градиентного элюирования необходимо тщательно контролировать скорость потока, если измеряют площади пиков, и соблюдать постоянство градиентного изменения состава подвижной фазы, если измеряют высоты пиков. Для анализа смесей компонентов, характеризующихся широким диапазоном значений к, предпочтение следует отдавать изократическому разделению с переключением колонок, а не градиентному. [c.179]

    Регистрацию хроматограмм и обработку данных проводят с помощью самописца или мини-ЭВМ, к-рая также рассчитывает количеств характеристики и в нек-рых случаях, качеств состав смесей Микропроцессор обеспечивает автоматич ввод пробы, изменение по заданной программе состава элюента при градиентном элюировании, поддержание т-ры колонки [c.153]

    Экстракция в колонке — в этом методе полимер наносят на инертную подложку (например, песок или стеклянные шарики), которой заполнена колонка, и проводят последовательное элюирование жидкостями с повышающейся растворяющей способностью. Градиент жидкостей колеблется от 100%-ного нерастворителя до 100%-ного растворителя с изменением состава растворителя во времени в логарифмической шкале. Наиболее обычный способ создания такого градиента заключается в использовании сосуда для смешения, снабженного хорошей мешалкой, в который вначале вносят нерастворитель, а затем часть его, удаленную из смесительной камеры в колонку, заменяют растворителем, добавляя последний с той же скоростью, [c.80]

    Изменение перечисленных условий хроматографии можно вести либо скачкообразно ступенчатое градиентное элюирование), либо непрерывно непрерывное градиентное элюирование). [c.556]

    Изменение концентрации в зависимости от объема может быть либо линейным, либо нелинейным (рис. 501, б). В большинстве случаев выгодно, чтобы pH или ионная сила буфера при элюировании непрерывно возрастали. [c.559]

    При изменении давления или при повышении температуры часто из буферного раствора начинают выделяться пузырьки растворенного воздуха. При элюировании несколькими литрами буфера это явление может привести к разрыву столбика ионита в колонке. Поэтому необходимо поглощенный воздух предварительно удалить. Для этого достаточно прокипятить буферный раствор и выдержать его под вакуумом водоструйного насоса в течение нескольких минут. [c.559]

    Методика очистки неэлектролитов с помощью смеси ионитов типа змея в клетке заключается в том, что определенный объем исходного водно-органического раствора вводят в колонку с ионитом ретардион-ИА8, из которого предварительно удаляют промывную воду до уровня верхнего слоя ионита. Одновременно с введением очищаемой жидкости дают возможность воде медленно вытекать из колонки. Во время этой операции происходит пропитка ионита исходным раствором. Элюирование во всех случаях осуществляют дистиллированной водой, осторожно подаваемой в колонку для предотвращения взмучивания верхнего слоя ионита. На выходе из колонки отбирают фракции определенных объемов анализ проводят обычными методами. Проведя ряд экспериментов при изменяющихся рабочих условиях (разные объемы очищаемого раствора, различные скорости элюирования, изменение температуры и т. д.), путем сравнения полученных выходных кривых находят оптимальный режим очистки. Степень очистки в данной колонке, как правило, тем выше, чем меньше взято исходного раствора и чем меньше скорость потока элюирующей воды. Удельное количество очищаемого исходного раствора может колебаться от 0,1 до нескольких объемов от взятого объема полиэлектролита аналогично может изменяться и расход воды на элюирование. [c.156]


    Благодаря высокой чувствительности детекторов, применяемых в современных жидкостных хроматографах, для анализа достаточно нескольких микролитров вещества. Разделение осуществляется в короткие промежутки времени за счет использования колонок малых размеров и высоких скоростей элюирования (давления на входе в колонку до нескольких сотен атмосфер). При применении некоторых типов детекторов (спектрофотометрических, транспортных и др.) можно управлять ходом разделения путем регулируемого изменения температуры, давления или состава элюента в ходе анализа. Программируемое изменение состава элюента (градиентное элюирование) плодотворно реализовано, например, в уже отмечавшейся методике ЛЭАХ [123, 124] (см. рис. 1.1). На применении транспортного детектора и смеси трех растворителей в качестве подвижной фазы основан способ [c.33]

    Поэтому в земной коре под влиянием каталитического воздействия пород происходят конфигурационные изменения исходных молекул. Время и место изменения этой конфигурации (диагенез, катагенез) являются еще весьма дискуссионными. Кроме изменения конфигурации атома С-14, что приводит к молекулам, имеющим уже 1 ис-сочленение колец /D (14р), в нефтяных (геологических) стеранах возможна также эпимеризация 17-го и 20-го углеродных атомов. В результате этих превращений образуются так называемые изо-стераны (два изомера), имеющие следующую конфигурацию а,14Р,17Р,20Д и 205. Эти два углеводорода обычно хорошо разделяются при ГЖХ и хорошо видны на хроматограммах нефтей. Интересна история определения особенностей их пространственного строения. В работах автора [32, 32а] каталитической изомеризацией 5а-холестана были получены изостераны, тождественные нефтяным. На основании масс-спектров им была приписана цис- lD-, т. е. 14р-конфигурация. Аналогичные стераны были описаны в нефтях в работе Райбака [29]. Далее в работе [30] было установлено, что ники изостеранов имеют 17р-конфигурацию заместителя и два основных пика принадлежат 14р,17 ,205 и 20Д-эпимерам. Однако окончательный порядок элюирования 205 и 20Д-эпимеров, а также окончательное подтверждение строения важнейших конфигурационно измененных стеранов (на примере холестана) было сделано независимо в работах [31, 33, 33а]. [c.115]

    С технической стороны выполнение первых двух условий не связано с какими-нибудь трудностями. Более сложным является получение эталонных углеводородов. Одвака нет никакой необходимости в синтезе всех индивидуальных углеводородов, которые могут присутствовать в анализируемых смесях, т. е. нет необходимости полного повторения того пути, который у же был пройден исследователями, разрабатывающими эти методы. Для газохроматографических целей с успехом можно использовать методы равновесной изомеризации или метиленирования, позволяющие легко и быстро получать смеси необходимых для анализа углеводородов. При использовании в качестве неподвижной фазы сквалана в целях большей достоверности желательно проведение газохроматографических анализов при нескольких температурах, отличающихся на 10—20° С. При этом полезно, для целей более надежной качественной идентификации, использовать следующие изменения в характере элюирования углеводородов различного строения. С повышением температуры уменьшаются времена удерживания алканов и, менее значительно, пятичленных цикланов. Углеводороды, имеющие групировку четвертичного атома углерода, начинают элюироваться позднее, чем их изомеры, не содержащие этой группировки. Само собой понятно, что понижение температуры приводит к противоположным эффектам. [c.337]

    Рассмотрим теперь причины селективности силикагеля с гидроксилированной поверхностью при элюировании неполярным элюентом в отношении алкилпроизводных ароматических углеводородов. В этих углеводородах заместители, во-первых, изменяют распределение электронной плотности в ароматическом ядре молекулы, т. е. изменяют ее специфическое взаимодействие с адсорбентом. Во-вторых, они могут по-разному влиять на неспецифическое межмолекулярное взаимодействие адсорбат — адсорбент и адсорбат— элюент, а следовательно, и на ориентацию молекул адсорбата. Алкильные заместители в алкилбензолах, хотя и не сильно, но по-разному влияют на распределение электронной плотности в бензольном кольце и, следовательно, могут по-разному изменять специфическое межмолекулярное взаимодействие бензольного кольца с гидроксильными группами поверхности силикагеля. В н-алкилзамещенных бензола изменение влияния алкильного заместителя на распределение электронной плотности в бензольном кольце при удлинении алкильной цепи быстро становится незначительным. Однако в этом случае про исходит увеличение вклада неспецифических межмолекулярных взаимодействий не только адсорбат — адсорбент, но и адсорбат — элюент, т. е. взаимодействий алкильной цепи молекул замещенных ароматических углеводородов с молекулами неполярного элюента — к-гексана. Поэтому заместители влияют на ориентацию таких молекул на поверхности. [c.287]

    Из рис. 16.7, а видно, что образование внутримолекулярных водородных связей в молекулах 1,2-диоксибензола уменьшает их удерживание на полярном адсорбенте по сравнению с удерживанием 1,3- и 1,4-диоксибензолами, так как внутримолекулярная водородная связь ослабляет специфическое взаимодействие адсорбат— адсорбент. Изменение величин А (AG) для производных фенола на силикагеле с гидроксилированной поверхностью по отношению к самому фенолу при элюировании смесью гексан— хлороформ — изопропанол составляет для пирокатехина (1,2-диоксибензола) 550, пирогаллола (1,2,3-триоксибензола) — 650, резорцина (1,3-дибксибензола)—3800, гидрохинона (1,4-диоксибензо-ла)—4950 и флороглюцина (1,3,5-триоксибензола)—8650 Дж/моль, соответственно. [c.294]

    Нередко в состав системы для ГВЭЖХ приходится добавлять дорогое устройство для эффективной дегазации растворителей продуванием гелия, действием вакуума на растворитель, подаваемый через специальные полупроницаемые трубки и т.д. Это связано с тем, что при смешении плохо дегазированных растворителей всегда выделяются пузырьки, так как растворимость газа в смеси растворителей обычно отличается от суммы растворимостей в чистых растворителях. Это особенно опасно при градиенте низкого давления, так как пузырек газа, попавший в клапанную систему и в насос, полностью нарушает их работу. Наконец, в градиентной системе существует довольно заметный объем от места формирования градиента растворителя до места его поступления в колонку обычно этот объем составляет от 1 до 3 мл или больше, поэтому состав растворителя, поступающего в колонку, отличается от того, который формируется в это же время. При работе на колонках малого диаметра (1—2 мм) и при небольших расходах растворителя (10—200 мкл/мин) это приводит к еще большим отличиям. Затруднительно гомогенное смешение сильного и слабого растворителей, поступающих в смеситель недостаточно эффективное смешение и неоднородность потока вызывают заметное увеличение шумов, что мешает использовать чувствительные шкалы детектора. Наконец, при градиентном элюировании практически исключается использование рефрактометрического детектора, так как изменение показателя преломления при изменении состава растворителя приводит к нарушению его работы. [c.66]

    Основной недостаток насосов постоянного давления — изменение расхода подвижной фазы при изменении сопротивления системы. Сопротивление колонки может повыситься из-за загрязнения входного фильтра, насадки или предколоночного фильтра. Оно меняется с изменением вязкости растворителя, происходящим при колебаниях температуры и практически всегда наблюдающимся при градиентном элюировании. Поэтому насосы данного типа постепенно вытесняются насосами постоянного расхода и применяются, главным образом, в препаративной хроматографии и для набивки колонок. [c.139]

    Анализируемое в-во (обычно в р-ре) вводится в испаритель хроматофафа, вде мгновенно испаряется, а пары в смеси с газом-носителем под давлением поступают в колонку. Здесь происходит разделение смеси, и каждый компонент в токе газа-носителя по мере элюирования из колонки поступает в мол. сепаратор. В сепараторе газ-носитель в осн. удаляется и обогащенный орг. в-вом газовый поток поступает в ионный источник масс-спектрометра, где молекулы ионизируются. Число образующихся при этом ионов пропорционально кол-ву поступающего в-ва. С помощью установленного в масс-спектрометре датчика, реагирующего на изменение полного ионного тока, записывают хроматофаммы. Т. обр. масс-спектрометр можно рассматривать как универсальный детектор к хроматофафу. Одновременно с записью хроматофаммы в любой ее точке, обычно на верщине хроматофафич. пика, м. б. зарегистрирован масс-спектр, позволяющий установить строение в-ва. [c.319]

    Частицы пробы размером более 1 мкм удерживаются по механизму, который отличается от механизма, характерного для описанного выше диффузионно контролируемого режима. Изменение режима иа стерический характерн-зуется обращением порядка элюирования, т. е. чем больше частицы, подвергаемые стерическому ФПП, тем раньше они элюируются. Когда зтн большие частицы, броуновским движением которых можно пренебречь, подвергаются действию поля, они останавливаются у аккумулирующей стенки. Эта тенден-1щя противоположна существованию гвдродинамических подъемных сил, которые увлекают частицы вверх и вдаль от стенки в условиях высокой скорости. Несмотря на то, что теория такого процесса удерживания до иастояпдаго времени не 1юлностью разработана, понятно, что между приложенным полем и этими подъемными силами, индуцированными потоком, должен быть достигнут очень тонкий баланс. Если скорость потока мала по сравнению с приложенным полем, частицы могут адсорбироваться на стенках и элюироваться непредсказуемо долго или не элюироваться вовсе. Если скорость потока слишком велика, чтобы эффективно компенсироваться полем, подъемные силы приведут к существенному ухудшению разрешения. Если же необходимый баланс достигается, инициация потока вдоль канала после релаксации вызовет движение частиц по потоку со скоростями, определяемыми степенью, с которой они выходят в поток равновесное расстояние от центра тяжести частиц до стенки будет примерио равно радиусу частиц. Уравнение удерживания для этого гидродинамического режима работы в таком случае может быть выражено следующим образом  [c.314]

    Подход с проточной ячейкой — наиболее простой вариант работы ЖХ-ФПИК. Хроматографический элюат проходит через проточную ячейку непосредственно после колонки, и интерферограмма непрерывно записывается в течение всего анализа. Использование алгоритма Грама—Шмидта, как в ГХ-ФПИК, для расчета отдельной хроматограммы поглощения в режиме реального времени неосуществимо, поскольку подвижная фаза сильно поглощает и небольшие изменения в поглощении при элюировании определяемых веществ с трудом детектируются. Поэтому обработка данных обычно проводится по окончании хроматографического анализа после вычитания спектра поглощения подвижной фазы. Чтобы предотвратить полное поглощение в полосе растворителя, необходимо использовать короткий оптический путь, обычно менее 0,2 мм для органических подвижных фаз и менее 0,03 мм для водных смесей. Вместе с тем обстоятельством, что коэффициенты поглощения в среднем ИК-диапазоне значительно меньше по сравнению с коэффициентами поглощения в УФ- и видимом диапазонах спектра, это приводит к сравнительно низкой чувствительности этого метода, порядка 0,1-1 мкг. Дополнительным недостатком этого интерфейса является то, что в области поглощения растворителя никакой информации о поглощении определяемого вещества не может быть получено, поскольку правильное вычитание затруднительно, особенно для обращенно-фазовых смесей растворителей. Более того, вычитание фонового сигнала не может быть проведено удовлетворительно, если необходимо градиентное элю- [c.630]


Смотреть страницы где упоминается термин Элюирование при изменении: [c.93]    [c.326]    [c.270]    [c.141]    [c.296]    [c.345]    [c.69]    [c.118]    [c.83]    [c.9]    [c.47]    [c.51]    [c.204]    [c.209]    [c.364]    [c.413]    [c.479]    [c.493]    [c.572]    [c.557]   
Аффинная хроматография (1980) -- [ c.108 , c.268 ]




ПОИСК





Смотрите так же термины и статьи:

Последовательность элюирования изменение с температурой

Равновесная модель для элюирования путем изменения

Элюирование

Элюирование изменение буфера

Элюирование путем изменения температуры

Элюирование фермента при изменении среды



© 2025 chem21.info Реклама на сайте