Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции с другими газами

    На второй ступени дегидрирования смесь трех бутенов (бутена-1 и цис-и тракс-бутенов-2) дегидрируется в бутадиен. Здесь, как и на первой ступени дегидрирования, степень превращения не превышает в среднем 22%. Выхо дящий из реакционной печи газ в основном состоит из смеси н-бутенов, бутадиена и водорода. Вследствие крекинга, изомеризации и других побочных реакций в газе содержатся также ограниченные количества изобутена, изобутана, гомологов ацетилена, в частности диметилацетилен, и выше- и ниже-кипящие составные части. [c.81]


    Рассмотрим случай, в котором концентрация газа 1 на поверхности намного ниже концентрации газа 2. Подобный случай наблюдается при абсорбции ЫНз совместно с СОо, так как растворимость N1 3 намного больше растворимости СО2. Если порядок реакции равен единице по концентрации обоих реагентов, то время реакции для каи<дого газа равно обратной величине произведения константы скорости реакции на поверхностную концентрацию другого газа. Следовательно, если (50)1 ( о)г будет намного меньше [c.112]

    В, Химический состав концентрация реагирующих веществ. Первоначальные кинетические исследования были начаты с изучения влияния концентраций реагирующих компонентов на скорость реакции. Для реакций между газами концентрации непосредственно связаны через уравнение состояния с давлением, объемом и температурой. Для жидкофазных реакций давление как переменная представляет второстепенный интерес (объем системы очень нечувствителен к изменениям температуры и давления). Поскольку стехиометрия реакции определяет соотношения между концентрациями различных участвующих в реакции веществ, концентрация каждого конкретного компонента не обязательно является независимой переменной. Так, при образовании иодистого водорода (Нг +12" 2Н1) числа израсходованных молей водорода и иода должны быть равны друг другу, в то время как число молей образовавшегося Н1 в два раза больше каждого из них. [c.16]

    Кроме временной потери активности в результате отложения кокса, наблюдается также необратимая потеря активности катализатора, объясняемая загрязнением катализатора, перегревом его и другими причинами. Часть катализатора измельчается и уносится потоками продуктов реакции и газов регенерации. На заводских установках для восполнения потерь и поддержания активности катализатора в циркулирующий поток его добавляется свежий катализатор. [c.15]

    Пропилен. 560 г смеси, состоящей из 94,5% пропилена и 5,5% пропана, загружалось [30] в 3-л вращающийся стальной автоклав. Автоклав нагревался 12 час. при 375°, так как при 330° термическая полимеризация пропилена шла очень медленно, это видно из того, что давление за 3 часа снизилось всего на 3 кг/см . При 375° в течение 10 час. давление снижалось от максимального в 214 до 54 кг/см . В результате реакции получалось 471 г жидкого продукта и 88 г газа, состоявшего из не вступивших в реакцию пропилена и пропана. Отсутствие других газов показывает, что крекинга не было. [c.188]


    Наиболее подробно исследованы реакции между газами и жидкостями (см. далее). Здесь кратко остановимся на других классах гетерогенных реакций. [c.176]

    Как реагируют друг с другом газы РН3 и С1з и что получится при пропускании РН3 через хлорную воду Написать уравнения реакций. [c.202]

    Общий результат этой реакции — превращение молекул озона в молекулы кислорода под действием атомов хлора из фреонов. Другие газы, реагирующие с озоном метан (СН4) и иные углеводороды, а также моноксид азота (N0). [c.408]

    В этой простой реакции образуются три важных продукта, производимые промышленностью в очень больших количествах водород, хлор и гидроксид натрия. Водород и хлор можно в большинстве случаев использовать без предварительной очистки, так как других газов ни на аноде, ни на катоде не выделяется. Но гидроксид натрия требует очистки, так как в растворе остается непрореагировавший хлорид натрия. [c.534]

    Таким образом, при энергетическом сопряжении процессов в мембране в принципе возможно усиление или ослабление результирующего потока массы в направлении, определяемом градиентом химического потенциала р. (пассивный перенос), и даже миграция газов в область более высоких значений (активный перенос). В любом случае в мембране совершается работа по перемещению массы за счет части свободной энергии, освобождающейся при химической реакции другая ее часть диссипирует. [c.18]

    Информация о других уравнениях имеется в работах [4, 69]. Расчет К°р для реакции (б) можно проводить по К°р(а) и константе равновесия реакции водяного газа К°р(вУ- [c.325]

    Эта форма учета материального баланса используется во многих методах расчета равновесий [8, 91, особенно для реакций в газах при высоких температурах. Для обычных температур переход элемента между различными частицами часто заторможен [7, 10—131. Например, в растворах с несколькими органическими лигандами сохраняется число молей каждого лиганда, а не только углерода и водорода, так как один лиганд в другой не переходит. [c.23]

    Асфиксия при недостатке кислорода, проще говоря удушье, наступает в тех случаях, когда воздух обеднен кислородом. Такое бывает, например, когда происходит реакция окисления кислородом воздуха и образуются твердые продукты или относительно нетоксичный диоксид углерода или когда воздух либо полностью, либо частично заменяется другими газами. В обоих случаях летальные исходы более вероятны в ограниченных объемах, чем на открытом воздухе. [c.442]

    Конверсия окиси углерода с водяным паром является составной частью процесса получения водорода для синтеза аммиака, метанола, высших спиртов и других процессов на основе природного, полу-водяного, попутных газов нефтеперерабатывающих производств и других газов. В промышленности конверсию окиси углерода с водяным паром осуществляют в двухступенчатых контактных аппаратах радиального типа на железохромовом катализаторе по реакции  [c.190]

    Роторные пленочные аппараты, применяемые в промышленности для упаривания растворов, могут успешно использоваться и для проведения химических реакций между газом и вязкими жидкостями. Основа конструкции такого аппарата (рис. 9) содержит традиционные элементы кожух /, заключенный в рубашку, вал 2 с лопастями 3 и распределитель жидкости 4. Лопасти могут быть как жестко закрепленными, так и подвешенными на шарнирах. При обработке очень вязких жидкостей (паст) хорошо зарекомендовали себя винтовые жестко закрепленные лопасти. В отличие от аппаратов других типов в роторном пленочном реакторе свободная поверхность жидкости из-за воздействия лопастей непрерывно обновляется. Это приводит к существенной интенсификации процесса массопередачи. [c.16]

    Первоначальный процесс зарождения [стадия (1)] представляет собой бимолекулярную реакцию диссоциации молекулы хлора при столкновении ее с частицами М, которыми могут быть молекула lj, СО или какого-либо другого газа. Затем идет развитие цепей [стадии (2), (3), (2 ). ..]. Обрыв цепей происходит в стадиях (4) и (5). При этом активные частицы — атомы хлора — рекомбинируют в результате тройных столкновений в неактивные молекулы хлора. [c.356]

    Далее продукты реакции из реактора попадают в блок разделения. И здесь затраты также во многом зависят от селективности и конверсии. Если мы имеем 100-процентную конверсию при столь же высокой селективности, то затраты на разделение вообще будут равны нулю. Если же процесс идет с селективностью 100%, но при конверсии 80%, то затраты на разделение уже возрастают. Но они все еще будут не очень большими, поскольку в катализате будут только два вещества—исходный и конечный продукт. Разделить их, как правило, несложно, в особенности, если один из продуктов — жидкость, а другой — газ. [c.112]


    Специальные мешалки применяют в случаях, когда непригодны лопастные, пропеллерные и турбинные. Так, для перемешивания очень вязких жидкостей и пастообразных материалов используют так называемые ленточные мешалки, которые при вращении очищают стенки реактора от налипающей реакционной массы. Для проведения реакций между газом и жидкостью применяют мешалки барабанного типа с лопастным барабаном, имеющим форму беличьего колеса, и другие конструкции. [c.97]

    При осуществлении процесса превращения углеводородных газов в ацетилен нужно, однако, учесть следующее. Во-первых, выше 1200° все газовые реакции протекают очень быстро. Поэтому, чтобы предотвратить распад ацетилена на элементы, продолжительность пребывания газов в зоне реакции следует свести к минимуму. Во-вторых, поскольку ниже 1200° стабильность ацетилена уменьшается, а стабильность других углеводородов растет, то, чтобы помешать разложению ацетилена и его реакциям с другими газами, выходящие из реактора продукты необходимо очень быстро охлаждать (подвергать закалке). Следует отметить, что получение ацетилена пиролизом парафинов сопровождается также увеличением объема вследствие образования водорода, а поэтому проведение процесса под низким давлением или в присутствии разбавителей должно давать известные преимущества. [c.272]

    Реакцию (2) исследовали сотрудники лаборатории концерна Империал кемикл индастриз [4], а также Бредиг и другие [5]. Она протекает только при температурах порядка 1200—1500°, т. е. в условиях, когда происходит пиролиз метана в ацетилен. В лаборатории для осуществления этой реакции смесь газов пропускали через узкие трубки. Реакция (4) тоже требует высоких температур такого же порядка. При низкой температуре, на которую указывает величина АС в табл. 72 (см. четвертую графу), углеродная связь в ацетилене не разрывается (стр. 380). [c.376]

    Процессы адсорбции широко применяются в промышленности при очистке и осушке газов, очистке и осветлении растворов, разделении смесей газов или паров, в частности при извлечении летучих растворителей из их смеси с воздухом или другими газами (рекуперация летучих растворителей) и т. д. Еще сравнительно недавно адсорбция применялась в основном для осветления растворов и очистки воздуха в противогазах в настоящее время ее используют для очистки аммиака перед контактным окислением, осушки природного газа, выделения и очистки мономеров в производствах синтетического каучука, смол и пластических масс, выделения ароматических углеводородов из коксового газа и для многих других целей. В ряде случаев после адсорбции поглощенные вещества выделяют (десорбируют) из поглотителя. Процессы адсорбции часто сопутствуют гетерогенному катализу, когда исходные реагенты адсорбируются на катализаторе, а продукты реакции десорбируются, например при каталитическом окислении двуокиси серы в трехокись на поверхности платинового катализатора и др. [c.563]

    При гетерогенном горении углерода реакция протекает на поверхности углеродного массива, к которому поступают молекулы кислорода из окружающего объема. Изучением механизма окисления углерода занимался широкий круг исследователей на протяжении более 70 лет. Имеется громадный экспериментальный материал, отражающий взаимодействие углерода с кислородом и другими газами в различных температурных и концентрационных условиях. [c.141]

    Водородный электрод готовят погружением платинированного платинового электрода в раствор, насыщенный под давлением р 1 атм, в процессе всего измерения газообразным водородом, очищенным от других газов. Электрохимическая реакция в данном случае представляется уже известным уравнением [c.36]

    Практическое значение (в данной группе) имеет ряд методов анализа газов. Так, например, для определения содержания СО2 в печных (топочных и других) газах измеряют определенный объем смеси газов, затем поглощают двуокись углерода раствором едкого кали и снова измеряют объем оставшегося газа. При этом количество образовавшегося углекислого калия и затраченной на реакцию гидроокиси калия не устанавливают. О содержании СО судят по изменению объема газовой смеси это изменение обусловлено связыванием непосредственно определяемого вещества — двуокиси углерода. При сжигании газов также наблюдаются изменения объема, которые удобно измерить и на основании изменения объема вычислить содержание того или другого компонента газовой смеси. Эти методы применяются в анализе газов. [c.26]

    Определите порядок реакции ЗА(газ) =Аз(тв). Давление исходного вещества в одном опыте упало от 0,252-10 до 0,205-10 Па за 31 ч, а в другом опыте, который проводился в том же сосуде при той же температуре, — от 0,105-10 до 0,102-10 Па за 20 ч. [c.68]

    Первоначально это предположение Полинга прошло незамеченным, но в 1962 г. в результате реакции инертного газа ксенона с фтором был получен фторид ксенона. Вскоре вслед за ним был получен ряд других соединений ксенона с яором и кислородом, а также соединения радона и криптона. [c.163]

    Пиролиз 2-метилпентена-2 в изопрен проводится в крекинг-печи. Для того чтобы добиться превращения олефинов с хорошими выходами и с минимумом побочных реакций, в качестве катализатора применяют бромистый водород, а в качестве разбавителя — пар. Пиролиз 2-адтилпентена-2 проводится при температурах 650—800 °С и времени контакта от 0,05 до 0,3 с. Изопрен, метан, другие газы и непрореагировавший 2-метилпентен-2 разделяются ректификацией. 2-Метилпентен-2 снова возвращается в пиролизную печь. [c.232]

    Гоеттлер и Пигфорд [4] исследовали рассматриваемую в этой главе проблему в режимах быстрой реакции и в переходном режиме от быстрой к мгновенной реакции. Был рассмотрен ряд проме-, жуточных случаев, поскольку реагируют два газа, которые могут иметь различные значения констант скорости k . Действительно, если константы скорости сильно различаются, то при промежуточных значениях времени диффузии для обоих газов может реализоваться не один и тот же режим абсорбции. В частности, если условия мгновенной реакции применимы только для одного газа, то концентрация b жидкого реагента в окрестности границы раздела фаз равна нулю, но другой газ диффундирует за фронтальную плоскость реакции. Привлеченный для решения этой проблемы математический аппарат довольно сложен и Гоетлером и Пигфордом быЛо получено только численное решение для выбранного ряда значений величин, подходящих безразмерных параметров. Общее поведение пока описывается лишь качественно, просто на основе известных физических представлений. [c.115]

    Пример 10. Требуется определить коэффициент теплоотдачи от контактного газа, протекающего ло трубкам теплообменя.чка, к стенкам трубки. Газ с температурой 440° С поступает от контактноло котла при производстве Н2304. В теплообменнике тепло сообщается другому газу, предназначенному для реакции. В результате прохождения теплообменника температура газа снижается с 440 до 230 ° С. [c.62]

    В. Давление и объем. Другими наиболее валшыми переменными, с которыми обычно имеет дело экспериментатор, являются объем и давление. При изучении реакций между газами молшо поддерлшват], постоянными либо давление, либо объем системы. Проще всего и.чучать газообразную систему, занимающую определенный объем. Для реакций в жидких и твердых системах давление контролируется наиболее удобно, тогда как контроль [c.15]

    Подсчитать, в каких соотноп1е.ииях надо смешивать тот и другой газ, чтобы после конверсии окиси углерода ио реакции [c.319]

    Для изучения равновесия реакций, одним из компонентов которых является водород, применют метод полупроницаемой перегородки. Этот метод близок к статическим, хотя, строго говоря, не является таковым. Он основан на способности тонкой платиновой или палладиевой пластинки пропускать при высокой температуре только водород, но не другие газы. [c.301]

    Схема для изучения равновесия методом полупроницаемой перегородки изображена iia рисунке VIII, 5. В сосуде /, ааходящемся в печи 3, создается медленный поток газовой смеси или исходного вещества, дающего при диссоциации, наряду с другими газами, водород Внутренний сосуд 2 сделан из платины, пропускающей водород. Этот сосуд перед опытом эвакуируют. В процессе реакции водород накапливается внутри сосуда 2 до тех пор, пока его давление в нем не сравняется с парциальным давлением его в равновесной смеси в сосуде / (предполагается, что газовая смесь идеальиа, а реакция в газовой фазе идет настолько быстро, что достигается равновесие). [c.302]

    Коэффициент диффузии. Гетерогенную реакцию можно разбить на несколько стадий 1) подход вещества к поверхности, 2) адсорбция, 3) реакция, 4) удаление продуктов. Любая из этих стадий может определять скорость реакции. Если лимитирующими является первая и четвертая стадии процесса, то скорость этого процесса зависит от диффузии поэтому кинетические процессы такого типа называются ди4х )у ионными процессами. Большое значение имеют диффузионные я леиия в таких процессах, как испарение жидкостей на воздухе или в среде других газов, растворение вещества в разных растворителях и т. п. Скорость этих процессов определяется скоростью диффузии. [c.422]

    Мы уже видели, что явления конденсации почти всегда сопровождаются частичной дегидрогенизацией. Поэтому весь прощесс крэкинга протекает в атмосфере водорода или какого-нибудь другого газа, но с б6ль[шим содержанием водорода. Можно думать, что давление будет способствовать реакции гидрирования присутствующих непредельных соединений. Процесс гидрогенизации Бергиуса является наиболее ярким примером, который можно привести для иллюстрации этой гипотезы. [c.269]

    При достаточно низкой температуре наиболее медленной стадией всех подобных процессов, по-видимому, является химическая реакция на поверхности. Однако, прежде чем эта реакция окажется возможной, газ должен продиффундировать к поверхности он должен продиффундировать через твердый продукт реакции (окись цинка в последнем примере) или через другие газы, присутствующие в системе (как в случае каталитической реакции или твердофазной реакции с выделением газообразных продуктов). Следовательно, во всех случаях диффузионный процесс должен предшествовать химической реакции. При этом должен происходить также и процесс обратной диффузии, следующий за химической реакцией, в тех случаях, когда образуются газообразные продукты. Так как температурный коэффициент для диффузии обычно значительно меньше, чем для химической реакции, диффузионные процессы при достаточно высоких температурах протекают существенно медленнее, чем поверхностные реакции, что и приводит к переходу в диффузионную область. В результате кривая выделения тепла приобре- [c.169]

    Благоприятные условия контакта фаз позволяют с успехом использовать псевдоожиженные системы для осуществления различных химических реакций. между газом и твердыми частицами. Псевдоожижающий газ может быть инертным агентом, инт енсифицирующим перемешивание твердых частиц и теплообмен (например, в некоторых процессах обжига термически неустойчивых твердых частиц). В других случаях химически инертными могут быть твердые частицы, выступая в роли только теплоносителя, обеспечивающего равномерное поле температур (в частности, при хлорировании метана, в псевдоожиженном слое песка). Очень часто в реакции участвуют как газ, так и твердые частицы, причем последние иногда в качестве катализатора (примерами могут служить гидрофторирование двуокиси урана, каталитическцй крекинг углеводородов). [c.333]

    Как уже указывалось, реакция горения водорода явилась одной из тех реакций, экспериментальное исследование которых дало необходимый фактический материал, легший в основу теории разветвленных цепных реакций. Вместе с тем оказалось, что главные черты механизма этой реакции свойственны такн е и реакциям горения других газов. Поэтому реакцию горения водорода нужно рассматривать как модельную реакцию, в той или иной мере представляющую реакцию горения вообще. Это оправдывает более подробное рассмотрение реакции горения водорода, чему в основном посвящен этот параграф. Общий механизм горения водорода может включать следующие лементарные реакции  [c.214]

    Процесс фирмы S ientifi Design (рис. 6.26) был разработан в i960 гг. Смесь бензола с воздухом подогревается в теплообменнике 1 до 120—150 С контактными газами и поступает в реактор 4—многотрубчатый аппарат с реакционными трубками диаметром 20 мм. Катализатор загружается в трубки, а в межтрубном пространстве циркулирует теплоноситель — расплав нитрит-нитратных солей. Бензол окисляется практически полностью, выход малеинового ангидрида составляет 68— 72%. Газы после аппарата 4 проходят теплообменник 1, холодильник 2 и направляются в сепаратор 5, где из них выделяется часть малеинового ангидрида. Далее газы поступают в скруббер 6, в котором водой улавливается оставшийся малеиновый ангидрид и другие растворимые в воде продукты реакции. Выходящий газ выбрасывается в атмосферу. В результате улавливания малеинового ангидрида [c.209]

    Следовательно, любое изменение в системе, нанравлешюе на увеличение количества газообразных молекул в зоне реакции (например, увеличение концентрации серы в исходном коксе и летучих), должно привести к ускорению процесса обессеривания и ири температурах выше 1200 °С. Об этом свидетельствуют данные [19, 130]. При этих температурах положительный эффект обессеривания кроме водорода дают и другие газы (сериР1стый газ, азот, углеводородные газы и т. д.), Наиример, иредложеио [132] проводить обессеривание кокса в кипящем слое в иотоке сернистого газа ири 1090—1590 °С. [c.214]

    Рассматриваемый процесс, как и другие каталитические реакции, является равновесньп . Изопропиловый спирт присутствует в смеси серной кислоты с изопропилсерной кислотой еще дс разбавления реакционной смеси водой, и его можно удалить продувкой другим газом. Удалению изопропилового спирта способствует то, что в реакционную смесь добавляют воду, чтобы возместить ту ее часть, которая израсходована на гидратацию пропилена. Только в очень немногих каталитических реакциях удается так легко обнаружить промежуточный продукт и следить за равновесным состо шием. [c.340]

    Д. А. Франк-Каменецкий и Ю. Г. Герварт [81] поставили соответ ствующий эксперимент по окислению бензина в сферическом турбулентном реакторе. В таком реакторе удалось достигнуть хорошего неремеишвания смееи благодаря тому, что через одну трубку непрерывно подается па периферию сосуда свежая смесь, а через другую из центра сосуда такл непрерывно выпускаются продукты реакции. При таком расположении подводящей и выводной трубок вытеснение продуктов реакции свежим газом становится невозможным и достигается тесное их перемешивание. С помощью такого реактора удалось наблюдать стационарное периодическое протекание холоднонламенного процесса в течение длительного времени. [c.197]

    Многообразие и надежность современных методов изучения особенностей протекания электрохимических реакций дали возможность установить механизм и кинетические характеристики наиболее важных электродных процессов, связанных с получением водорода, кислорода, других газо образных продуктов, с протеканием электрохимического синтеза ряда соединений, катодного вылеления и анодного окисления металлов, совместным разрядом ионов, а также с явлениями самопроизвольного растворения металлов (коррозионные процессы). [c.139]


Смотреть страницы где упоминается термин Реакции с другими газами: [c.165]    [c.332]    [c.65]    [c.180]    [c.208]    [c.311]    [c.29]    [c.565]   
Смотреть главы в:

Экспериментальные методы в неорганической химии -> Реакции с другими газами




ПОИСК





Смотрите так же термины и статьи:

Газы реакции



© 2025 chem21.info Реклама на сайте