Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кератин структура

    Рис. 21-17. а-Спираль, тип свертывания белковой цепи, обнаруживаемый как в фибриллярных, так и в глобулярных белках. -Спираль была предсказана Л. Полингом и Р. Кори на основе экспериментов по модельному построению белков с учетом длин связей и валентных углов, полученных в результате рентгеноструктурных исследований отдельных аминокислот и полимеров из двух-трех аминокислот. Впоследствии эта структура была обнаружена в белках волос и шерсти, в кератине кожи и в таких глобулярных белках, как миоглобин и гемоглобин. [c.316]


    В белке волос и шерсти, а также других кератинах а-спирали многократно скручены друг с другом в многожильные тяжи, которые образуют видимые глазом нити. Цепи белков шелка вытянуты во всю длину (а не свернуты в спираль) и соединены с параллельными цепями водородными связями в листы, показанные на рис. 21-2,а. В глобулярных белках цепи не являются полностью вытянутыми или полностью свернутыми в а-спираль чтобы молекула имела компактную структуру, она должна быть надлежащим образом деформирована. В молекуле миоглобина (см. рис. 20-25) 153 аминокислоты белковой цепи свернуты в восемь витков а-спирали (обозначенные на рисунке буквами А-Н), которые в свою очередь свернуты так, что в результате получается компактная молекула. Витки Е и Р образуют карман, в котором помещается группа гема, и молекула кислорода может связываться с атомом железа этого гема. Подобным же образом построена молекула гемоглобина, которая состоит из четырех миоглобиновых единиц (см. рис. 20-26). Небольшой белок цитохром с (см. рис. 20-23) имеет меньше места для витков а-спирали. 103 аминокислоты этого белка свернуты вокруг его группы гема подобно кокону, оставляя к ней доступ только в одном месте. У более крупных ферментов, например трипсина (223 аминокислоты) и карбоксипептидазы (307 аминокислот) в центре молекулы имеются области, где белковая цепь делает ряд зигзагов, образуя несколько параллельных нитей, скрепленных водородными связями подобно тому, как это имеет место в молекуле шелка. [c.317]

    Полинг и Кори в цитированной работе (1953) предложили в качестве модели для р-кератина структуру волнистого слоя  [c.316]

    Таким образом, шерстяное волокно и волосы представляют собой сложный природный композиционный материал, механическая прочность которого определяется ориентированными вдоль оси волокна фибриллярными образованиями кератина. Фибриллярные структуры образуются преимущественно фракциями кератина, имеющими относительно мало серосодержащих звеньев. Фибриллы кератина построены из цилиндрических [c.379]

    Кератин - основной компонент волос, шерсти, ногтей, перьев, рогов и копыт. Одна из форм кератина содержит только спиральные структуры (а-кератин), другая - только складчатые слои (Р-кератин). Возможен переход а-формы в (3-форму. Поскольку первая форма более растяжима и в ней легко разрываются водородные связи, полипептидные цепи приобретают более устойчивую (3-конформацию. Эти особенности кератинов позволяют изменять форму волос и шерсти при тепловой и механической обработке. [c.26]


    А, содержащая семичленные циклы, имеет винтовую ось симметрии третьего порядка. Она была предложена Хаггинсом для а-кератина структура приблизительно вдвое короче плоской, вытянутой цепи р-кератина. В волокнах а-кератина отдельные спирали соединяются между собой в слои посредством дисульфидных мостиков и за счет взаимодействия боковых цепей. М. Хаггинс показал, что плоская ленточная структура а-кератина У. Астбери с тремя остатками на изгиб не удовлетворяет экспериментальным геометрическим параметрам и реализоваться не может. [c.16]

    Структура волос достаточно сложна, как показано на рис. VII. 19 и рис. VII.20. Структурной единицей является белковая цепь, альфа-кератин. Три скрученные цепи альфа-кератина образуют суперскрученную нить, а 11 таких нитей составляют микрофибриллу. Каждый волос состоит из множества микрофибрилл, каждая из которых окружена тонким внешним слоем - кутикулой. Это несколько слоев клеток, лежащих как солома на крыше. [c.474]

    В обьиных условиях эта группа белковых веществ не растворяется в растворителях, используемых для растворения фибриллярных белков.. Особенностью первичной структуры белков, относящихся к группе кератинов, является относительно большое количество серосодержащих звеньев (Met, ys, yS - Sy ). [c.377]

    Первичная структура макромолекул кератина до настоящего времени не уточнена, что обусловлено химической неоднородностью белкового субстрата. а-Спиральные участки полипептидных цепей имеют протяженность около 100 А.  [c.380]

    Одним из важных фибриллярных белков является кератин, из которого состоят волосы, ногти, рога, иглы дикобраза и т. д. Каждый по собственному опыту знает, что кератин (от греч. кегоз — рог) служит для животных прекрасным средством защиты, предохраняющим их от воздействия неблагоприятных факторов окружающей среды. Английский ученый в области молекулярной биологии У. Т. Эстбери (1898— 1961) обнаружил в 1931 г., что волосы и другие кератины обычно дают характерные рентгенограммы, отвечающие структурам, которые он назвал структурами типа а-кератина, а в растянутых волосах он получил структуры типа р-кератина. Структура а-кератина та же, что и у а-спирали (приставка а в термине а-спираль была выбрана именно поэтому). Рентгенограммы волос показывают, что полипептидные а-спирали не просто расположены параллельно одна другой, но скручены подобно трех- или семижильным кабелям (рис. 15.6). [c.431]

    При увеличении влажности волоса до 5-7% происходит экстремальное увеличение его плотности, что обусловлено гидратацией пептидных и других полярных групп полимерного субстрата. При большем содержании воды в кератине развиваются пластификационные процессы, ослабляющие межмолекулярные контакты и повышающие сегментальную подвижность полипептидных цепей. Если бы кератин был представлен в полимерном субстрате только одним типом вторичной структуры - а-спиралью, - то все они были бы жесткими палочковидными образованиями. Но макромолекулы белка включают и участки статистических клубков, а также складчатые р-структуры (правда, доля последних невелика). [c.380]

    Ленты р-кератина, по-видимому, не сливаются во вторичные спирали, а располагаются в пучке слоями или образуют различные клубки Все эти более сложные комплексы а-спиралей или цепочек р-типа представляют третичную структуру белка. [c.177]

    Полипептидные цепи фибриллярных белков имеют форму спирали, которая закреплена расположенными вдоль цепи внутримолекулярными водородными связями. В волокнах фибриллярных белков закрученные пептидные цепи расположены параллельно оси волокна, они как бы ориентированы относительно друг друга и имеют высокую степень асимметрии. Фибриллярные белки плохо растворимы или совсем нерастворимы в воде. При растворении в воде они образуют растворы высокой вязкости. К фибриллярным белкам относятся белки, входящие в состав тканей и покровных образований. Это миозин — белок мышечных тканей коллаген, являющийся основой седимента-ционных тканей и кожных покровов кератин, входящий в состав волос, роговых покровов, шерсти и перьев. К этому же классу белков относится фиброин натурального шелка, хотя по своей структуре он отличается от других фибриллярных белков. Пептидные цепи фиброина имеют не спиралевидную, а линейную форму они соединены друг с другом межмолекулярными водородными связями, что и определяет, по-видимому, высокую механическую прочность натурального шелка. [c.374]

    Молекулярный вес белков варьирует в широких пределах— от нескольких тысяч до десятков миллионов. Сравнительно простыми являются такие белки, как кератин, фиброин и др. Белки этого типа носят название фибриллярных (нитевидных) белков. Ош обладают, как правило, достаточно высокой жесткостью и прочностью, в связи с чем используются организмом для создания жестких структур. Кератин, например, служит основным белком кожи, ногтей, волос, рогов и перьев. Из фиброина состоят шелковые нити. К фибриллярным белкам отиосится также коллаген, который входит в состав хрящей и сухожилий. [c.438]


    При разрушении части дисульфидных связей волосы можно растянуть более, чем в два раза по сравнению с первоначальной длиной. Рентгенограмма таких волос показывает, что цепи кератина в них имеют структуру типа складчатого слоя. По-видимому, в этом случае соседние полипептидные цепи в слое параллельны, т. е. направлены в одну сторону (на аминокислотный остаток вдоль оси приходится 325 пм, в 2,17 раза больше, чем в а-спирали), а не антипараллельны (длина остатка 350 пм в 2,33. раза больше, чем в а-спирали). [c.433]

    Вторичная структура белков. Это первый этап пространственной организации полипептидных цепочек, контролируемый водородными связями пептидных групп, как внутримолекулярными, так и межмолекулярными. Основными видами вторичной структуры являются а-спираль, характерная как для всей молекулы белка (кератин волос, миозин и тропомиозин мышц), так и только для отдельных участков белкового полимера (инсулин). Она стабилизирована внутримолекулярными водородными связями >С=0- Н-Ы<. [c.97]

    ТРЕТИЧНАЯ СТРУКТУРА БЕЛКОВ. Белки делятся на две большие группы — фибриллярные и глобулярные. Для удобства классификации белки, у которых отношение длины к ширине больше 10, называют фибриллярными, а белки для которых это отношение меньше 10,— глобулярными. Фиброин шелка и р-форма (развернутая форма) кератина, а также синтетические полипептиды принадлежат к группе фибриллярных белков,, у которых почти [c.409]

    Фибриллярные белки практически нерастворимы в воде и солевых растворах, обладают волокнистой структурой. Полипептидные цепи, расположенные параллельно одна другой в форме длинных волокон, образуют структурные элементы соединительных тканей. Важнейшие представители этой группы структурных белков — коллагены, кератины и эластины (разд. 3.8.3). [c.345]

    Эластические свойства кератина волос и шерсти, ио данным ронтге-ноструктурного анализа, зависят от того, что в нерастянутом белке полипептидная цепь закручена сама на себя. Растягивание развертывает петли и образуег цепь из аминокислотных единиц с периодом идентичности 3,3 А, сравнимым с таковым для фиброина. Кератин богат цистином, который образует дисульфидные поперечные связи между пептидными цепями. Шерсть может быть модифицирована, а волосы завиты путем восстановления меркаптаном для расщепления части поперечных связей и обратного окисления для образования других поперечных связей. Восстановление, которое в случае завивки производится смачиванием раствором тиогликолевой кислоты, приводит к денатурированному белку с менее жесткой структурой, допускающей растяжение и перестройку молекулы. Появление и исчезновение сульф-гидрильных групп можно проследить при помощи нитропрусоидной пробы. [c.668]

    Несмотря на различия в первичной структуре, белковые компоненты шерсти объединяются в группу кератинов, средний состав которых приведен в табл. 6.8. Кератины подразделяют на две подгруппы, не имеющие четкой границы эукератины и псевдокератины, - характеризущиеся различным содержанием цикло- и серосодержащих звеньев, а также различной плотностью упаковки структурных элементов в полимерном субстрате. [c.379]

    Структура а-сггарали является наиболее важным и широко распространенным случаем организации молекул глобулярных белков (например, ферменты). Структура р-складчатого слоя встречается в фибриллярных белках типа фиброина шелка и р-кератина (кожа, волосы, ногти, рога, копыта и т.д.). [c.271]

    А фиброин шелка и р-форма кератина принадлежит к группе фибриллярных белков, у которых почти полностью развернугьте полипептидные цепи организованы в складчатую структуру. [c.271]

    Крашение шерсти напоминает процессы, протекающие в ионообменных смолах. Кератин шерсти, образующий за счет остатков цистина сетчатую структуру, является цвиттерионом. В качестве основания он обладает эквивалентным весом 1200 и окрашивается в уксуснокислом растворе красителями, имеющими кислотные группы. В результате двойного обмена соли шерсти с натриевой солью сульфо-кислотного красителя последний связывается в виде соли и в процессе крашения примерно при 90° медленно диффундирует в шерстяное волокно. Небольшие молекулы красителя, например моноазосоединения или производные аминоантрахинона с одной сульфогруппой в молекуле, дают очень ровные выкраски по шерсти соединения с двумя сульфо-группами закрепляются сильнее и поэтому более прочны к стирке (суп-раноловые или полярные красители), но зато дают менее ровные выкраски. Большое значение для крашения шерсти имеет, кроме того, способность некоторых красителей (см. стр. 608) образовывать с солями хрома комплексные соединения, очень прочные к стирке и свету. [c.600]

    Электронная структура полимеров определяется характером существующей химической связи между атомами элементарного звена и между отдельными участками макромолекулы. Например, в молекуле белка кератине, являющегося основой строения натурального волокна — шерсти, существуют ковалентные полярные связи с высокой долей делокализации электронной плотности между атомами пептидной группировки -НЯС-СО-КН-, составляющей скелет макромолекулы. Кроме этого, внутри макромолекулы и между макромолекулами существуют другие виды химической связи, также определяющие пространственную конфигурацию (конформацию) макромолекулы водородные связи, вандерваальсовы и другие виды взаимодействий. Но электронн-ная структрура полимеров не всегда может быть представлена как сумма электронных структур отдельных его участков. Вследствие большого числа атомов, участвующих во взаимодействии, для полимеров, так же, как и для твердых тел, но при гораздо большем числе влияющих факторов, могут быть рассчитаны валентная зона и зона проводимости. По величине расщепления — разности энергий между ближайшими границами этих зон, могут быть выделены полимеры — изоляторы, полимеры — полупроводники и полимеры — проводники электрического тока. Для полимеров с бесконечными цепями атомов, обеспечивающих делокализацию электронов по всей макромолекуле, предсказывают и сверхпроводящие свойства. [c.613]

    По форме молекул белки можно приблизительно делить на две группы — склеропротеины и сферопротеины. Первые имеют волокнистую структуру и служат строительным материалом тканей. К ним относится коллаген, содержащийся в коже, сухожилиях, хрящах и костях. Коллаген построен в основном из глицина, пролина и оксипролина. При частичном гидролизе он превращается в желатину. Коллаген составляет почти одну треть всех животных белков. Другие склеропротеины — кератин, содержащийся в волосах, ногтях, перьях и шерсти, и фиброин из натурального шелка. В мышечных волокнах присутствуют главным образом белки миозин и актин. Они не растворяются в воде и активно участвуют в механохимических процессах, обусловливающих работу мышц. Поскольку тела млекопитающих примерно на 40% состоят из мышц, оба этих белка относятся к наиболее распространенным органическим соединениям в организмах млекопитающих. [c.194]

    КЕРАТИНЫ (от греч. keras, род. падеж keratos-por), структурные фибриллярные белки, состоящие из параллельных полипептидных цепей, имеющих конформацию а-спирали или -структуры (структуры складчатого листа)-соотв а-К и -K. [c.372]

    Для фибриллярных белков характерна спиральная структура с периодом идентич- ности примерно 7а (фиброин). Белки со кскладчатой структурой (кератин) состоят, по-видимому, из вытянутых цепей, связанных друг с другом межмолекулярными водородными связями. Глобулярные белки часто содержат участки, в которых остатки аминокислот частично входят в спиральную конформацию и частично — в неспирализованные сегменты. Измерение содержания спиральных участков на основании изменения вращательной способности при денатурации было применено впервые для полиаминокислот (см. 31,35) и позднее перенесено на белки. Второй метод основан на скорости изотопного обмена вторичного амидного водорода на дейтерий. Обмен в спирализованной ча-сти. молекулы идет медленнее, чем в беспорядочно свернутых сегментах (Блу, 1953—1961 Линдерштрем-Ланг, 1955). [c.710]

    Еще в 30-х годах главным образом в работах Астбери была дана рентгеногра(ф Ическая характеристика многих фибриллярных белков. Важнейший результат работ Астбери сводится к следующему. Многие совершенно различные в химическом отношении белки, такие например,, как кератин волос, шерсти и рога, миозин мышц, эпидермис кожных покровов, фибриноген—фибриллярный белок, образующийся при (свертывании крови, а также М(ногие другие дают практически одинаковые рентгенограммы. Это возможно только лишь В том случае, если конфигурации цепей этих белков и их упаковка (Или, иначе, их вторичная и третичная структуры в своих общих чертах не за(висят от специфччеокого чередова(Ния аминокислотных остатков. Здесь речь идет именно об общих чертах вторичной и третичной структур, так как на отдельных участках возможны существенные отклонения от общего плана строения за счет специфического взаимодействия боковых групп остатков, к чему, как указывалось выше, рентгенографический метод исследования оказывается нечувствительным (речь идет об изучении фибриллярных структур). [c.542]

    Эпидермис состоит из эпителиальных клеток. Самый глубокий слой его — основной, базальный или производящий — из ряда цилиндрических клеток, расположенных перпендикулярно к базальной мембране. Они не прилегают вплотную одни к другим, между ними есть межклеточные пространства или щели, по которым циркулирует лимфатическая жидкость. В этом слое происходит в основном регенерация эпидермиса. Следующий за ним шиповатый слой состоит из нескольких рядов клеток. В нижних рядах эти клетки многогранно кубические, к периферии они все более уплощаются. И в этом слое клетки не прилегают плотно друг к другу. Межклеточные щели и мостики между клетками выражены в большей степени, чем в других слоях эпидермиса. Над шиповатым располагается зернистый слой — один или два ряда клеток (на ладонях и подошвах — до семи), веретенообразных по форме. Длинником они расположены параллельно поверхности кожи. Затем следует прозрачный (стекловидный) слой, состоящий из плоских безъядерных клеток. Он хорошо заметен лишь на участках, где эпидермис утолщен — на ладонях, подошвах. Протоплазма клеток этого слоя диффузно пропитана элеидином — белковым веществом, поэтому структура клеток, их границы — невидимы. Весь слой представляется блестящей светлой полосой. Самый поверхностный и самый мощный слой эпидермиса — роговой, он состоит из пластов уплощенных ороговевших клеток, пропитанных кератином. Клетки рогового слоя обычно пропитаны жиром и липоидами. Межклеточные щели заполнены также жиром и липоидами, которые играют важную роль в защитной функции. В последние годы доказано, что липогенез активно протекает непосредственно в коже. У человека этот процесс наиболее выражен в коже головы и груди. [c.11]

    А, химотрипсин, иммуноглобулины) такие иротяжеаные листы, нередко изогнутые или свернутые, иронизыпают белковую глобулу, составляя основу ее пространств, структуры ( супервторичная структура ). (3-Структура встречается и в фибриллярных белках ((З-кератин). [c.109]

    ДУБЛЁ1ШЕ КОЖИ И МЕХА, обработка их дубильными (дубящими) в-вами с фиксацией структуры дермы путем придания ей пластичности, прочности, износоустойчивости и т. д. В результате между молекулами коллагена дермы (в произ-ве кожи) или кератина волоса (в произ-ве меха) и молекулами дубильного в-ва образуются хим. связи. Благодаря этому повышается т-ра сваривания коллагена, уменьшается склеиваемость элементов его микроструктуры, возрастает устойчивость дермы к действию ферментов и гидролизующих агентов, уменьшаются набухание ее в воде и усадка при сушке, увеличивается прочность при растяжении в обводненном состоянии, уменьшается смачиваемость и повышается упругость волоса Дубление (Д) проводят в барабанах, вращающихся с частотой 4-8 мин , при 20-33 С и атм давлении в зависимости от вида сырья продолжительность процесса 6-48 ч Используют как неорг, так и орг. дубильные в-ва Во мн. случаях применяют комбиниров. методы Д, т. е. одновременно или последовательно вводят в процесс неск различных по природе дубителей это позволяет сократить длительность Д, рационально использовать дубящие св-ва отдельных в-в [c.121]

    У структурных белков находят следующие типы конформаций полипептидных цепей а-спираль, -структуру складчатого листа и суперспирапь. Важнейшие представители этих белков — кератины, белки шелка и коллагены. В ряде других структурных белков особые физические свойства достигаются благодаря трехмерным сшивкам полипептидных цепей ковалентными мостиками. Резилин, белковый компонент хитиновых пластинок, содержащийся, в частности, в местах причленения крыльев насекомых. [c.420]

    Боковые группы большого размера лучше всего могут быть размещены в структуре совсем иного рода. Каждая цепь закручена так, что образуется спираль (как винтовая лестница). Между различными участками одной и той же цепи возникают водородные связи, фиксирующие структуру спирали. Для а-кератина (нерастянутая шерсть, волосы, рога, ногти) Полинг предложил спираль, в которой на один виток (шаг спирали) приходится 3,6 аминокислотных остатка (рис. 37.4). Согласно моделям, подобная спираль, содержащая 3,6 аминокислотных остатка на виток, образует пространство, достаточное для размещения боковых цепочек, и позволяет образоваться всевоз- [c.1058]

    Для того чтобы объяснить период идентичности, равный 5,1 А (0,51 нм) в а-кератине, необходимо рассмотреть то, что является собственно третичной структурой. Полинг предположил, что каждая спираль сама может быть закручена в сверхспираль, имеющую один виток на 35 витков а-спирали. Шесть подобных суперспиралей могут быть заплетены вокруг седь-а-спирапь вытянутой спирали подобно семижильному кабелю.] [c.1060]

    Дисульфидные мостики определяют механические свойства внеклеточных белков. Дисульфидные мостики обычны в белках, котог рые переносятся или действуют во внеклеточном пространстве типичными примерами служат змеиные яды и другие токсины, пептидные гормоны, пищеварительные ферменты, белки комплемента, иммуноглобулины, лизоцимы и белки молока. Кроме того, эти мостики играют важную роль в некоторых крупных структурах. Свойства вязкости и эластичности различных природных продуктов по крайней мере отчасти определяются дисульфидными мостиками между структурными белками [ПО]. Поперечные связи между молекулами кератина придают эластичность шерсти и волосу [110], когезионноэластичный характер теста из пшеничной муки определяется дисульфидами глютенина, а трехмерная сеть дисульфидов глютенина создает трудности при влажном помоле зерна. Таким образом, оказывается, что успехи в таких древних занятиях, как помол зерна, обработка шерсти и даже парикмахерское искусство, зависят от сложных конструкций дисульфидных связей [110]. [c.68]


Смотреть страницы где упоминается термин Кератин структура: [c.669]    [c.655]    [c.83]    [c.382]    [c.178]    [c.109]    [c.253]    [c.249]    [c.94]    [c.238]    [c.532]   
Химия природных соединений (1960) -- [ c.542 ]




ПОИСК





Смотрите так же термины и статьи:

Кекуле структуры Кератин

Кератин



© 2024 chem21.info Реклама на сайте