Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насосы см сухие

    Сюда относятся вакуум-насосы, эжекторы, барометрические конденсаторы. Вакуум-насосы осуществляют отсос газов, их сжатие и выхлоп. Различают вакуум-насосы сухие и мокрые, поршневые и ротационные. Сухие предназначены для отсоса только сухих газов, мокрые — для откачки газа вместе с жидкостью. Поршневые сухие вакуум-насосы имеют производительность 160—200 м /мин и обеспечивают остаточное давление до 30 мм рт. ст. Ротационные вакуумные насосы снабжены рабочим колесом с неподвижными лопатками, вставленными эксцентрично в корпусе насоса.  [c.245]


    Поршневые вакуум-насосы (сухие) Сумского завода производительностью от 12 до 90. vt газа в минуту создают вакуум порядка [c.267]

    Типоразмер аппарата тепло- обмена, м мм Тип насоса сухого при гидро- испыта- нии [c.759]

    Ловушка предназначена для задержания капельной влаги, увлекаемой воздухом, просасываемым по трубопроводу, предохранения вакуум-насосов от попадания агрессивных жидкостей и исключения возможности гидравлического удара, а для насосов сухого типа — от попадания в них любой влаги. Методы расчета ловушек аналогичны методам расчета ресиверов. При этом ловушка берется ближайшего меньшего размера по сравнению с выбранным ресивером или такого же, если к фильтру или группе фильтров устанавливаются по два ресивера. [c.51]

    Т-/—кристаллизаторы-теплообменники Т-2—кристаллизаторы, охлаждаемые хладоагентом Т-5— теплообменник первый фильтрат —сухой растворитель Т-<—холодильник сухого растворителя Т-5—паровой нагреватель смеси Е-1—промежуточная емкость регенерированного растворителя (а—секция сухого растворителя, б —секция влажного растворителя) i- —сырьевой насос Н-2—насос влажного растворителя Н-5—насос сухого растворителя 1—вход сырья 2—вход первого фильтрата 3—вход второго фильтрата <—вывод охлажденной смеси в промежуточную емкость, питающую фильтр г—ввод охлажденного растворителя в фильтры в—вход сухого регенерированного растворителя Т —вход влажного регенерированного растворителя —вывод первого фильтрата на регенерацию. [c.247]

    Предпочтительнее насосные станции, в которых основное оборудование находится в сухом помещении, а не располагается в той же камере, куда поступают сточные воды. Установка, показанная на рис. 10.22, справа, представляет собой насосную станцию заводского изготовления, предназначенную для перекачки максимальных расходов от 6 до 100 л/с. Насосы оснащены системой автоматического управления (для фиксации уровня сточных вод в камере используется трубка, из которой выходят пузырьки воздуха). Обратное давление на воздух, поступающий в пузырьковую трубку, включает ртутный переключатель, управляющий стартером насоса. Сухое помещение имеет систему вентиляции, в нем поддерживается определенная влажность для защиты контрольно-регулирующего и технологического оборудования и создания безопасных условий труда для рабочих. [c.278]

    Ресиверы служат для отделения фильтрата от воздуха, откачиваемого вакуум-насосами, а ловушки — для задержания капельной влаги из воздуха и предохранения вакуум-насосов сухого типа от попадания воды. Ловушки и ресиверы изготовляются заводами по индивидуальным заказам и серийно в соответствии с требованиями ГОСТ 9931—61 Сосуды и аппараты цилиндрические стальные сварные . [c.121]


    Существует еще целый ряд конструкций петель, но мы остановимся еще на контуре, позволяющем вести испытания в условиях пароводяной смеси высоких параметров, т. е. в потоке влажного пара [103]. В этой установке (рис. 206) деминерализованная и дегазированная вода перекачивается поршневым насосом. Сухой перегретый пар, получаемый в аккумуляторе 4, амортизирует давление в петле и уменьшает колебания скорости воды. После подогрева в теплообменнике 5 вода попадает в электрический нагреватель 6, где образуется пароводяная смесь желаемого состава, которая направляется в испытательную секцию 8. Затем пар попадает з теплообменник для подогре- [c.332]

    Например, при использовании в пароводяной арматуре и насосах сухая набивка промазывается графитно—водяной смесью или протирается сухим графитом с последующей просыпкой набивки чешуйчатым графитом. [c.45]

    В вакуумной технике для удаления влаги, сконденсировавшейся в масляном насосе, применяют продувку газообразным азотом. При откачке насосом сухого азота из баллона в течение 20—30 мин. восстанавливается величина предельного вакуума, создаваемого насосом. [c.347]

    Различают вакуум-насосы сухие и мокрые (предназначенные для откачки конденсирующих сред). В технике низких температур используются преимущественно сухие вакуум-насосы. [c.347]

    А—приготовление угольной пасты Б—жидкофазная гидрогенизация В—предварительное гидрирование Г—бензинирование или расщепление Д—стабилизация Е—получение этана Ж—получение пропана 3—осушка газа И—получение бутана К—абсорбционная очистка газа (удаление аммиака) Л—производство газового бензина М—газоочистка (удаление СО и Н З) И—алкацидная очистка, молотковая дробилка 2—вращающаяся сушилка 3—бункер для сухого (4% НаО) угля с катализатором 4 —бак для затирочного масла 5—ластовый насос высокого давления 6—регенератор (теплообменник) / сепаратор Л—газоподогреватель 9—реактор 10—уровнемер 11—горячий сепаратор 12—центрифуга 3—печь полукоксования шлама 14—емкости для дросселирования 15—холодильник 16—продуктовый сепаратор 17—водоотделитель 18—циркуляционный насос 19—масляный абсорбер 20—детандер 21—алкацидный абсорбер 22—реактор с окисью железа (280°) для удаления сероокиси углерода 23—сборник среднего масла 24—дистилляционная колонна 25—водный абсорбер 26—бак для среднего масла 27—электрический подогреватель сборник бензина 29—емкости для среднего масла Б  [c.35]

    В установках непрерывного действия суспензию сухого мыла в масле готовят в специальном смесителе. Суспензия прокачивается насосом через нагреватель, где происходит растворение мыла в масле, и далее через охлаждающий аппарат, где образуется нужная структура смазки. [c.192]

    Блок абсорбции и стабилизации верхнего продукта первой ректификационной колонны 6. Основным аппаратом блока является фракционирующий абсорбер 13, разделенный глухой перегородкой на две части нижнюю — абсорбер-десорбер с 31 тарелкой и верхнюю— абсорбер второй ступени с 6 тарелками. В абсорбере-де-сорбере из газа поглощаются пропан и бутаны, а из жидкой фазы отпариваются метан и этан. Абсорбентом служит фракция н. к.— 85 °С. Абсорбер второй ступени предназначен для поглощения паров бензина, увлеченных сухим газом из абсорбера-десорбера. Абсорбентом служит фракция 140—240 °С. Насыщенный абсорбент из абсорбера второй ступени насосом подается в первую ректификационную колонну б сухой газ, выходящий с верха абсорбера второй ступени, поступает в топливную сеть завода. Тепло абсорбции в абсорбере-десорбере снимается в трех точках по высоте абсорбционной части аппарата циркуляцией абсорбента через холодильники. [c.107]

    Оставшаяся часть вторичного пара отводится или к мокрому вакуумному насосу, где конденсируется, или к барометрическому конденсатору, который соединен с сухим вакуум ным насосом. Количество отсосанного вторичного пара зависит от давления остро-, го пара и от заданной степени сжатия. Количество острого пара вместе с засосанным количеством вторичного пара должно соответствовать количеству греющего пара, кото рое определяется производительностью испарителя. [c.279]

    Если пролитую жидкость невозможно откачать насосом, то вместо смыва водой предпочтительнее осуществлять сухую уборку засыпать песком или другим подходящим материалом этот участок и удалить полученную массу в безопасное место. В таких случаях на территории предприятия вблизи возможных проливов целесообразно иметь достаточные запасы песка. Засыпка песком разлитых огнеопасных жидкостей предусмотрена рядом действующих правил безопасности. [c.253]

    В виде боковых погонов колонны 20 отбираются флегмы в отпарные колонны 21 и 22,ъ низ которых подается водяной пар. Фракция 180—240 °С с низа колонны 21 прокачивается насосом 26 через теплообменник 27 и аппарат воздушного охлаждения 28 и выводится с установки в резервуар. Верхнее и нижнее циркуляционные орошения осуществляются соответственно насосом 13 через теплообменник 9 и холодильник 10, насосом 14 через аппараты И и 12 и возвращаются на лежащие выше тарелки колонны 20. Остаток — фракция выше 350 °С (мазут) — забирается насосом 15 с низа колонны 20 и направляется в змеевики печи 61. В низ стабилизационной колонны 29 сообщается тепло за счет циркуляции остатка насосом 35 через змеевик печи 34. Верх колонны 29 покидают газы, конденсирующиеся и охлаждающиеся в аппаратах 30 и 31. Они поступают в сборник 32, откуда часть газов уходит в линию сухого газа. [c.19]


    Циркуляционный газ под давлением 5 МПа компрессором 24 возвращается в систему платформинга, а избыток его — в систему гидроочистки. Нестабильный катализат из сепаратора 22 поступает в сепаратор низкого давления 23 (давление 1,9 МПа). Выделившийся из катализата углеводородный газ выходит с верха сепаратора и смешивается с углеводородным газом гидроочистки перед входом во фракционирующий абсорбер 27. В этот же абсорбер насосом 25 подается и жидкая фаза из сепаратора 23. Абсорбентом служит стабильный катализат (бензин). В абсорбере 27 при давлении 1,4 МПа и температуре внизу 165 °С и вверху 40 С отделяется сухой газ. [c.41]

    В колонне 18 осуществляется стабилизация катализата. Головная фракция стабилизации после охлаждения и конденсации в аппарате 19 отделяется в газосепараторе 20 от сухого газа и подается насосом 21 на орошение стабилизатора 18, а балансовое количество выводится с установки. Для подвода тепла в низ стабилизационной колонны 18 служит трубчатая печь 17. Нижний продукт колонны 18 — стабильный катализат — выводится с установки через аппарат 14. [c.42]

    С верха абсорбера 3 уходит сухой газ с содержанием углеводородов Сз —С5 не более 10—15 % (об.). В сепараторе 4 от него отделяется конденсат, а сухой газ направляется в заводскую топливную сеть. Абсорбер оборудован системой циркуляционных орошений для съема тепла абсорбции. Тепло для отпаривания углеводородов С1 —Са подается в низ абсорбера с помощью горячей струи . Для этого продукт с низа абсорбера забирается насосом 1, проходит один поток трубчатой печи 5 и вводится в абсорбер 3 под первую ректификационную тарелку. [c.59]

    Из приемника 14 рафинатный раствор насосом 18 подается в секцию регенерации растворителя через теплообменник 17 (греющая среда — уходящий горячий рафинат) в змеевик трубчатой печи 16. С температурой 270—290 С парожидкостная смесь поступает в испарительную рафинатную колонну 20. Здесь отделяется основное количество фенола в виде паров. Для предотвращения уноса рафината с парами фенола колонна оборудована ректификационными тарелками (6—7 штук), орошаемыми фенолом. Пары фенола, уходящие с верха колонны 20, конденсируются в теплообменнике 23. Конденсат после холодильника 26 собирается в приемнике сухого фенола 28. [c.72]

    Выходящие из колонны 32 пары фенола являются теплоносителем для кипятильника 25 после него регенерированный фенол поступает через теплообменник 24 и холодильник 26 в приемник сухого фенола 28. Пары фенола и воды, выходящие из колонны 36, конденсируются в аппарате 35 конденсат вместе с экстрактным раствором подается в сушильную колонну 27. По выходе из колонны 36 экстракт направляется насосом 37 через теплообменник 2 и концевой холодильник (на схеме не показан) в резервуар. [c.72]

    Сырье насосом I подается через теплообменник 2 в деаэратор 3. В теплообменнике оно нагревается жидким фурфуролом, отводимым из колонны 26. Деаэрация проводится водяным паром в вакууме (9,97 кПа). Воздух и пары воды отсасываются с помощью и вакуум-создающей системы. Забираемое с низа деаэратора 3 насосом 6 сырье охлаждается в теплообменнике 8, воздушном и водяном холодильниках 9 и 10 и поступает в нижнюю часть роторно-дискового контактора 12. В верхнюю часть этого контактора насосом 27 подается сухой фурфурол из буферного сборника, расположенного ниже колонны 26. Предварительно сухой растворитель охлаждается в теплообменнике 2 и воздушном холодильнике 7. [c.74]

    Фурфурол регенерируется из раствора рафината в две ступени. Раствор рафината, отводимый из приемника 4, подается насосом 5 через теплообменник 18 и змеевики трубчатой печи 20 в колонну 15. В этой колонне из рафинатного раствора под вакуумом регенерируется основная часть фурфурола. Температура нагрева в печи 20 не должна превышать 215 °С, так как фурфурол обладает низкой термической стабильностью. Пары сухого фурфурола из колонны 15 поступают в аппарат воздушного охлаждения 33, а затем в холодильник 34 отсюда фурфурол стекает в вакуум-приемник 35. Из приемника 35 сухой фурфурол в качестве орошения подается насосом (на схеме не показан) в колонны 15, 24, 29 и 32. Избыток фурфурола направляется в секцию экстракции. [c.74]

    Раствор экстракта с низа колонны 24 насосом 25 направляется через змеевики трубчатой печи 28 (нагрев не выше 230 °С) в эвапоратор высокого давления 29. Пары фурфурола из аппарата 29 конденсируются в теплообменнике 21, и конденсат поступает в нижнюю часть сушильной колонны 26, служащей сборником сухого фурфурола. Часть паров из эвапоратора 29, минуя теплообменник 21, направляется под нижнюю тарелку колонны для поддержания температурного режима низа колонны. [c.75]

    Экстрактный раствор из эвапоратора высокого давления 29 насосом 30 подается в эвапоратор низкого давления 32, где фурфурол испаряется за счет перепада давления. Пары сухого фурфурола с верха эвапоратора 32 вместе с парами сухого фурфурола из испарительной колонны 15 конденсируются, охлаждаются, и конденсат стекает в вакуум-приемник 35. Из эвапоратора 32 часть экстрактного раствора в качестве рециркулята насосом 37 после холодильника 13 и отстойника 13 подается в низ контактора 12. Оставшийся экстрактный раствор перетекает в отпарную колонну 31, где под вакуумом и с помощью острого перегретого водяного пара происходит окончательное отпаривание фурфурола. На [c.75]

    Сырье — рафинат — насосом 10 через водяной холодильник 11 подается в регенеративные кристаллизаторы 13—16, где охлаждается фильтратом, полученным в I ступени фильтрования. Число кристаллизаторов зависит от пропускной способности установки. Сырье разбавляется холодным растворителем в трех точках на выходе его из кристаллизаторов 13, 14 и 15. Растворитель подается насосами из приемников сухого и влажного растворителей (на схеме не показано). Из регенеративных кристаллизаторов раствор сырья поступает в аммиачные кристаллизаторы 18—20, где за счет испарения хладагента (аммиак или пропан), поступающего из приемника 24, охлаждается до температуры фильтрования. Охлажденная суспензия твердых углеводородов в растворе масла поступает в приемник 1, а оттуда самотеком в вакуумные фильтры 2 ступени I. Уровень суспензии в вакуумных фильтрах регулируется регулятором уровня, который связан с линией ее подачи. Фильтрат I ступени (раствор депарафинированного масла) собирается в вакуум-приемнике 7, откуда насосом 17 подается противотоком к раствору сырья через регенеративные кристаллизаторы, а затем через теплообменник 12 для охлаждения влаж- [c.80]

    Сырье — рафинат — насосом 9 через водяной холодильник 10 подается в регенеративные кристаллизаторы первой группы 13, 14 (число кристаллизаторов зависит от пропускной способности установки), где охлаждается фильтратом, полученным в I ступени фильтрования. Сырье разбавляется растворителем в двух точках — на выходе его из кристаллизаторов 13 и 16, а после кристаллизатора 19 — фильтратом П ступени. Растворитель (сухой и влажный) подается насосами 25 и 11 из приемников сухого и влажного растворителей (на схеме не показаны). Из первой группы регенеративных кристаллизаторов суспензия сырья поступает в аммиачные кристаллизаторы 16 и 17, где за счет испарения хладагента (аммиак или пропан), поступающего из приемника 15, охлаждается до температуры —30- -—32 °С. Далее суспензия сырья охлаждается в регенеративных кристаллизаторах второй группы 19 и 20, после чего суспензия поступает в этановый кристаллизатор 22, где охлаждается до температуры фильтрования. [c.84]

    Охлажденная суспензия твердых углеводородов в растворе масла поступает в приемник 1, а оттуда — самотеком в вакуумные фильтры 2 ступени I. Уровень суспензии в вакуумных фильтрах регулируется регулятором уровня, который связан с линией ее подачи. Фильтрат I ступени (раствор депарафинированного масла) собирается в вакуум-приемнике 8, откуда насосом 21 противотоком раствору сырья подается через регенеративные кристаллизаторы 13, 14, 19 я 20 ъ теплообменники 12 и 26 для охлаждения влажного и сухого растворителя и далее в приемник 27. Отсюда раствор депарафинированного масла направляется в отделение регенерации растворителя. Осадок промывается холодным растворителем, подаваемым насосом 25. [c.84]

    Раствор депарафинированного масла (фильтрат) подается насосом 1 через теплообменники 4, 5 и паровой подогреватель 8 в колонну 10. Здесь пары растворителя отделяются от жидкости и уходят из колонны далее пары растворителя конденсируются в межтрубном пространстве теплообменника 4 и в аппарате воздушного охлаждения 3. По выходе из водяного холодильника 2 конденсат поступает в приемник сухого растворителя (на схеме не показан). Отводимая с низа колонны 10 жидкость насосом 11 подается через трубное пространство парового подогревателя 12 в колонну 9, в которой поддерживается давление 0,20—0,35 МПа. Пары растворителя, выходяш,ие из колонны 9, охлаждаются и конденсируются в теплообменнике 5 и аппарате 7. Конденсат, пройдя водяной холодильник 6, собирается также в приемнике сухого растворителя. Остаток с низа колонны 9, пройдя за счет перепада давления клапан и трубное пространство парового подогревателя 14, поступает в парожидком состоянии в колонну 15. Пары из колонны 15 объединяются с парами, выходящ,ими из колонны 10. [c.87]

    II. 20, 25, 31 — насосы 2,6— водяные холодильники 3 — 7 — аппараты воздушного охлаждения 4, 5 — теплообменники 8, 12, 14, 17, 19, 26, 30 — паровые подогреватели 9, 10, 15 — колонны для сепарации паров сухого растворителя 16, 29 — отпарные колонны 13, 23, 24, 27 — конденсаторы-холодильники 13, 28 — колонны й секции регенерации растворителя из раствора гача (или петролатума) 21 — сборник 22 — отстойник  [c.89]

    Сухое мыло может быть получено на установку готовым или приготовлено непосредственно в процессе производства смазки, В последнем случае омыляемое сырье и водный раствор щелочи (суспензия) в необходимых количествах смешиваются в попеременно действующих реакторах, снабженных высокооборотным перемешивающим устройством и рубашкой для подачи теплоносителя. После завершения реакции омыления или нейтрализации (для жирных кислот) водная пульпа мыла поступает на сушку в вакуумный барабанный аппарат непрерывного действия. Сухое мыло эрлифтом подается в бункер, а затем уже весами 5 дозируется в один из двух параллельно установленных реакторов 1, куда предварительно дозировочным насосом 2 закачивается примерно 2/3 необходимого количества нефтяного масла. После тщательного перемешивания смесь насосом 2 прокачивается через электрический трубчатый нагреватель 8, где нагревается до 200— 210 °С и далее смешивается с остатком масла и масляным раствором присадок в смесителе 9. Затем смесь поступает в деаэратор 10, в циркуляционном контуре которого установлен гомогенизирующий клапан 6. В деаэраторе из мыльно-масляного расплава удаляется воздух, после чего расплав направляется для охлаждения в скребковый холодильник 12. Охлажденная смазка поступает в сборник-накопитель 16, а некондиционный продукт через сборник-накопитель 15 направляется на переработку или откачивается с установки, [c.103]

    В колбе на 500 мл, снабженной обратным холодильником, перемешивают раствор 10,3 г (30 ммоль) Со2(СО)в в 200 мл ССЦ (избыток) в течение 1 ч при 57 3°С. Охлажденный до комнатной температуры раствор встряхивают с 150 мл воды, органический слой отделяют, сушат N32804 и упаривают в вакууме водоструйного насоса. Сухой остаток переносят в аппаратуру для возгонки. При 40 °С в высоком вакууме получают аналитически чистые кристаллы пурпурного цвета. Выход 4,3—4,6 г (68—727о). Иначе продукт можио очищать путем экстракции сухого остатка в аппарате Сокслета гексаном. [c.2041]

    Были предложены также методы одновременного проведения процессов сушки, слива и измельчания смолы путем распыления сжатым воздухом. Смолу после конденсации распыляют на мельчайшие капельки, которые с высоты 20—ЗО-.метровой башни падают вниз на дно ее. В башне предусмотрены различные зоны обогрева в вер <ней части 70—80°, в средней 40—50° и в иижней — холодная зона. Влажный возду.х уносится вентилятором или насосом. Сухая твердая смола собирается в виде порошка на дне башни и выносится оттуда шне.ком. Этот метод ие нашел еще иримеиенин вследствие сложности установки. [c.385]

    Кристаллическую ортофосфорную кислоту Н3РО4 готовят обезвоживанием в вакууме фосфорной (водной) кислоты. В круглодонную колбу емкостью 300 мл помещают 80—100 мл концентрированной фосфорной кислоты, колбу закрывают резиновой пробкой с двумя стеклянными трубками. Одну из трубок, опущенную в кислоту, соединяют с промывной склянкой и осушительными колонками, наполненными последовательно хлоридом кальция, концентрированной серной кислотой и фосфорным ангидридом. Другую, короткую, трубку соединяют с водоструйным насосом. Нагрев колбу с кислотой до 32—38° С на водяной бане, включают насос. Сухой воздух барботирует через кислоту и тем самым ее перемещивает. Через 1,5—2 ч (после удаления большей части воды) прибор присоединяют к ротационному насосу, создающему разрежение до 1—.2 мм рт. ст., и продолжают обезвоживание при указанной температуре. Между насосом и прибором включают колонку, наполненную хорошим осушителем, например фосфорным ангидридом или перхлоридом магния. Температуру 32—38° С нужно поддерживать точно, так как при снижении ее до 30° С возможно выделение полугидрата. При 42,4° С ортофосфорная кислота плавится, и обезвоживание выше этой температуры приводит к ее загрязнению пирофосфорной кислотой. [c.250]

    Отмывать трубки от загрязнений следует хромовой смесью. Для этого прежде всего необходимо вынуть пришлифованные краны, чтобы они не разбились, и снять соединительную резину. Измерительную и уравнительную трубки лучше оставлять с хромовой смесью на ночь. На следующий день хромовую смесь удаляют, трубки промывают несколько раз дестиллированной водой, Когда в качестве затворной жидкости используют ртуть, то после промывания измерительную и уравнительную трубки тщательно просушивают продуванием с помощью водоструйного насоса сухим воздухом, лищед-яЫм пыли. Соединительную резиновую трубку промывают 10%-ным раствором соды, затем струей воды из водопровода и, под конец, десшлднрованной водой, а затем сушат сухим чистым и холодным воздухом, продуваемым в течение длительного времени. [c.519]

    На рис. 55 приводится принципиальная схема блока стабилизации и абсорбции, используемого на комбинированной установке ЭЛОУ — АВТ со вторичной перегонкой бензина (тип А-12/9) производительностью 3 млн. т/год сернистой нефти Ромашкинского месторождения. Смесь легких бензиновых паров и газа из первой ректификационной колонны атмосферной части установки АВТ поступает в емкость для сепарации газа 2. Газ после отделения от жидкой фазы проходит в абсорбер 9. Абсорбентом служит фракция н. к. — 85 °С, коточая подается с низа стабилизатора через теплообменники 8. Избыток фракции н. к. — 85 °С выводится из системы. Абсорбентом для абсорбера II ступени служит фракция 140—240 °С, выходящая из осксзной ректификационной колонны атмосферной части. Насыщенный абсорбент из абсорбера II ступени насосом подается в основную ректификационную колонну. Сухой газ, выходящий с верха абсорбера II ступени, поступает в топливную сеть завода. Тепло абсорбции во фракционирующем [c.149]

    Отсутствие сухого всасывания. Перед пуском иасос необходимо заполнять жидкостью, гак как разрежение, создаваемое при вращении рабочего колеса в воздушной среде, недостаточно для подъема воды во всасываю1.ц,ую полость насоса вследствие большой разности плотностей жидкости и воздуха, что видно нз формулы [c.10]

    Поршневые насосы обладают достаточно высоким к, п. д. и другими достоинствами, к числу которых относятся а) малая чувствительность к изменению вязкости перекачиваемой жидкости б) способность под. херживать постоянный напор ири переменной производительности в) способность сухого всасывания без предварительной заливки насоса и всасьшающего трубопровода жидкостью. [c.27]

    Систему пылеуборки обычно присоединяют к контуру заземления, чтобы отводить статическое электричество. Трубопроводы систем пылеуборки монтируют обычно из стальных бесшовных труб со стенкой толщиной 3,5—5 мм. В качестве побудителей тяги в пылесосных установках применяют водокольцевые вакуум-насосы типа РМК и ВВМ, а также турбинные воздуходувки. При использовании турбинных воздуходувок применяют двухступенчатую очистку (первая ступень — сухие циклоны, вторая ступень — герметичные матерчатые фильтры). При применении в качестве побудителей тяги водокольцевых вакуум-насосов типа РМК и ВВМ также применяют двухступенчатую очистку (первая ступень — сухие циклоны, вторая ступень — мокрые циклоны типа ГФ). [c.276]


Смотреть страницы где упоминается термин Насосы см сухие: [c.265]    [c.759]    [c.245]    [c.141]    [c.300]    [c.178]    [c.261]    [c.104]    [c.112]    [c.82]   
Справочник инженера-химика Том 1 (1937) -- [ c.336 ]




ПОИСК







© 2025 chem21.info Реклама на сайте