Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование н-парафиновых углеводородов фракции

    Для определения группового состава жидкость предварительно разделяют на фракции НК —60°С, 60—95°С, 95— 122 °С, 122—150 °С, 150—200 С, 200 °С — КК. Затем каждую фракцию подвергают анализу. Вначале стандартными методами определяют содержание ароматических углеводородов. После удаления из фракций ароматических определяют содержание нафтеновых и метановых (парафиновых) углеводородов. Из-за низкой реакционной способности этих углеводородов их количественное определение основано главным образом на физических способах (перегонка, хроматография, кристаллизация, спектрометрия, растворение в различных растворителях и др.). В последнее время стали щироко использовать хроматографический метод исследования жидких углеводородов для определения их индивидуального состава. Выбор метода определяется целями исследования. На начальном этапе, когда требуется идентифицировать (установить тип) месторождение и возможные направления использования его продукции, очевидно, необходимо использовать весь арсенал аналитических средств с тем, чтобы установить полный детальный состав пластового флюида. [c.22]


    ИССЛЕДОВАНИЕ Н-ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ ФРАКЦИИ 150—200= МИРЗААНСКОЙ НЕФТИ [c.107]

    Следующей стадией исследования являлось выделение-из деароматизированной фракции парафиновых углеводородов нормального строения. Для этой цели применяли мочевину, которая, как известно из литературы [13], образует с парафиновыми углеводородами нормального строения комплексные соединения, при разложении которых снова регенерируются н-парафиновые углеводороды. [c.121]

    Определенный интерес представляло установление строения н-парафиновых углеводородов вышеуказанных фракций, чему и посвящено данное исследование. [c.125]

    Исследование количественного распределения пяти- и шестичленных цикланов в норийском бензине показало, что с повышением температуры кипения фракции повышается в ней содержанне циклопентановых - углеводородов и понижается содержание парафиновых углеводородов. [c.158]

    Известно, что товарные парафины из большинства нефтей состоят главным образом из нормальных парафиновых углеводородов, содержащих от 22 до 30 атомов углерода и соответственно очень мало отличающихся по физическим и химическим свойствам. При таком составе очищенного парафина и температуре плавления от 48,9 до 60° очень вероятно присутствие изомеров с разветвленными цепями, обладающими настолько низкой температурой плавления, что они могут кристаллизоваться вместе с сырым мягким парафином и в значительной степени удаляться при выпотевании. На это указывают результаты обширного исследования узких фракций парафина, полученных перегонкой при давлении 1 мм рт. ст. из нефти месторождения Мид-Континент [8]. Как можно было ожидать. [c.42]

    Если чистые индивидуальные парафиновые углеводороды, как м-додекан, тетрадекан, гексадекан, октадекан или 10—20°-ные фракции когазина II, подвергнуть сульфохлорированию до примерно 50%-ной степени превращения (полусульфохлорирование), полученные полу-сульфохлориды омылить разбавленным раствором едкого натра, отде- пить нейтральное масло от раствора соли сульф.окислоты, а остаток масла извлечь пентаном, то после выпаривания и сушки получают соли сульфокислот в твердом состоянии. Такие соли сульфокислот полностью очищены от нейтрального масла (нейтральное масло сильно ухудшает капиллярно-активные свойства). Их можно с успехом применять для систематического исследования зависимости капиллярной активности [c.410]

    Содержание бензино-керосиновых фракций наиболее высокое в советской нефти — 36,8% (фракции до 200°С) и 74,5% (фракции до 350°С). В бензиновых фракциях всех указанных нефтей преобладают в основном парафиновые углеводороды (больше 50%) содержание ароматических углеводородов у них выше, чем в ранее исследованных нефтях. [c.256]


    Парафиновые углеводороды определялись по разности. Количество н-парафиновых и нзопарафиновых углеводородов во фракциях с т. кип. 150—200° и 200—250° уточнялось с помощью карбамида. Результаты исследования сацхенисской иефти сведены в табл. 2. [c.180]

    Каждая из полученных фракций подвергается раздельному исследованию. Каким образом исследуют, например, бензиновую фракцию Углеводороды бензиновой фракции разделяются на две части — ароматическую и нафтено-парафиновую — с помощью адсорбции на силикагеле (жидкостно-адсорбционная хроматография) Это разделение возможно потому, что ароматические углеводороды сильнее адсорбируются поверхностью адсорбента, чем нафтеновые н парафиновые углеводороды. Если пропускать бензиновую фракцию через стеклянную колонку, наполненную хмелкоиз-мельченным силикагелем, то ароматические углеводороды адсорбируются в первую очередь и задерживаются в верхней части колонки, а смесь нафтеновых и парафиновых углеводородов проходит в нижнюю часть колонки и по мере ее накопления вытекает снизу. С помощью специальных растворителей можно вытеснить нз колонки раздельно нафтено-парафиновую и ароматическую части, причем разделение удается осуществить количественно. Этот лтетод разделения неоднократно проверялся на искусственных смесях. В книге Россини, Мэйра и Стейфа Химия углеводородов неф- [c.10]

    Спо собность. цеолита СаА адсорбировать только нормальные парафиновые углеводороды может быть использована для депарафинизации масел. Этот процесс считается перспективным для внедрения в промышленность [36]. Однако в литературе отсутствуют данные о систематическом исследовании этого процесса, а приводятся лишь некоторые сведения об использовании цеолита для удаления из масел твердых нормальных парафинов [39—41]. При воздействии цеолита СаА яа узкие масляные фракции, полученные при перегонке дистиллята, ие очищенного от смол и по-лициклических углеводородов, их температура застывания. после обработки 1П0 методике [41] при 150 "С практически не изменяется, в то время как повышение температуры до 300°С приводит к резкому снижению темтературы застывания этих фракций. Данные о температуре застывания неочищенного сырья и после его [c.284]

    Детальное изучение большого числа фракций парафинов из нефти месторождения Мид-Континент [133] показало, что главная масса нефтяного парафина состоит из углеводородов нормального строения с примесью незначительных количеств разветвленных форм углеводородов. Эти данные были подтверждены также рентгенографическими исследованиями, на основании которых авторы пришли к заключению, что в парафине нефти Мид-Континента содержится 65 % парафиновых углеводородов нормального строения и 20% разветвленной структуры. [c.85]

    Изомеризация. Хорошо разработанный процесс представляет сОбой каталитическая изомеризация пентана. Точно так же в промышленном масштабе нашла себе применение и изомеризация гексана. Однако с точки зрения производства моторного топлива изомеризация этих углеводородов в процессе каталитического риформинга имеет небольшое значение. Это объясняется тем, что в большинстве случаев октановые числа фракций С 5—С в достаточно высоки и нет необходимости прибегать к каталитическому риформингу этих фракций. Кроме того, они не нуждаются в рифор-мииге ввиду достаточно хорошей приемистости к тетраэтилсвинцу. Однако образование ароматических углеводородов и особенно бензола из фракции С6 требует изомеризации парафиновых углеводородов этой фракции. Объектом глубокого изучения является изомеризация парафинов фракции С,. Эти исследования еще не привели к созданию промышленного процесса, хотя теоретически реакция представляет интерес для повышения октанового числа парафиновых углеводородов фракции С 7. Главное до-стоилство этой операции заключается в получении исключительно больших теоретических выходов высокооктановых изомеров. Однако на практике наличие в продукте нафтеновых и ароматических уг.певодородов, а также тенденция к диспропорционированию между высоко и низкокипящими фракциями значительно затрудняют промышленную реализацию этого процесса. По-видимому, парафиновые углеводороды фракции С. являются наиболее высококипящими из тех, которые целесообразно подвергать изомеризации, так как углеводороды фракций Сз, С и Сщ даже после низкотемвературной изомеризации до равновесного состояния над катализаторами Фриделя-Крафтса неспособны повысить октановое число фракций настолько, чтобы удовлетворить требованиям сегодняшнего дня. [c.165]

    Фракционироьапнем мирзаанской нефти (скв. № 99) была выделена фракция 70—95°, которая и представляла объект нашего исследования. После соответствующей промывки п сушки, фракция была перегнана в присутствии металлического натрия. Т. к. мы проводили количественное определение ароматических углеводородов 100% серной кислотой, поэтому предварительно необходимо было выяснить содержатся ли во фракции ненасыщенные углеводороды, чтобы избежать шибки прн определении количества ароматических углеводородов. Проба дала отрицательный результат иа содержание ненасыщенных углеводородов при действии на нее бромной воды, и слабого щелочного раствора перманганата калия. Концентрированная серная кислота незначительно действует на большую часть нафтеновых и парафиновых углеводородов. На этом свойстве основано определение ароматических углеводородов в нефти, для чего на.ми были приготовлены 100% серная кислота добавлением в обыкновенную серную кислоту кольбаумской SO3. [c.20]


    В результате проведенного исследования нз фракции 200—250° норийской нефти выделены следующие н-парафиновые углеводороды додекан, тридекан, тстрадекаи н пентадекан, которые идентифицированы по их физическим свойствам и также методом инфракрасной спектроскопии этим же методом во фракции 194—215° установ-лено присутствие н-де-кана и н-ундекана. [c.106]

    В результате проведенного исследования установлено, что фракция 150—200° мирзаанской нефти содерх<ит 9,6% нормальных и 17,5% нзопарафиновых углеводородов. Из н-парафиновых углеводородов доказано присутствие нонана,. декана и ундекана. [c.109]

    Нами показано, что фракция 200—250° патараширак-скон нефти из скважины 71 содержит 16,7% парафиновых углеводородов. Представляло определенный интерес установить строение входящих в эту фракцию парафиновых углеводородов, чему и посвящено настоящее исследование. [c.115]

    Следующей стадией исследования являлось выделение нормальных парафиновых углеводородов из деароматизиро-ваннон фракции с помощью карбамида. [c.128]

    Как будет показано ниже, существует большое различие в углеводородах, присутствующих в них. Унте давно известно и подтверждается сравнительно недавними исследованиями типов углеводородов, а также индивидуальных углеводородов, присутствующих в бензинах прямой гонки, что состав нефтей во многих случаях обладает исключительно большим разнообразием. Так, например, бензиновая фракция мичиганской нефти содержит 63,1% нормальных парафиновых углеводородов и 13,2% парафиновых углеводородов с разветвленными цепями, в то время как нефть месторождения Винклер содерлшт 9,5% нормальных парафиновых углеводородов и 61,6% парафиновых углеводородов с разветвленными цепями. [c.41]

    Разработка методики с последовательным применением хроматографии на полярных и неполярных адсорбентах, комплексообразования с карбамидом в сочетании с вакуумпой перегонкой к перекристаллизацией полученных фракций из раствора в этиловом эфире позволила Н. И. Черножукову и Л. П. Казаковой провести систематическое исследование твердых углеводородов и дать о них принципиально новое представление как о многокомпонентной смеси (см. гл. 2). Парафины, церезины и восковые продукты, получаемые на их основе, в зависимости от назначения должны обладать определенной совокупностью свойств, которые обусловлены химическим составом твердых углеводородов и структурными особенностями их компонентов. Многие эксплуатационные свойства парафинов и церезинов зависят от соотношения в них углеводородов-хшрямшпг разветвленными парафиновыми [c.21]

    Однако во всех этих исследованиях имеются указания на присутствие небольших количеств низкоплавких углеводородов, возможно, парафиновых углеводородов с разветвленными цепями. Так, Бачлер и Гревс при перекристаллизации узких фракций из двухлористого этилена получили мягкий парафин , или примесь , а Феррис и др. этим же методом нашли низксплавкие твердые парафины и высказали предположение, что они представляют собой изомерные парафиновые углеводороды с разветвленными цепями. Карпентер на основании изучения физических свойств высококипящих и высокоплавких фракций также пришел к выводу о возмож ном присутствии небольших количеств изопарафиновых углеводородов. [c.43]

    Н. И. Черножукова [24—26]. Эти исследования позволили установить, что углеводороды всех гомологических рядов при кристаллизации из растворов в неполярных растворителях, в том числе и в нефтяных фракциях, образуют кристаллы орторомбической формы, причем характерна ступенчатая слоистость кристаллов, т. е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей (рис. 35 а в). Кристаллы твердых углеводородов, принадлежащих разным гомологическим рядам, различаются по размерам и степени слоистости. Наибольшие размеры кристаллов и число ромбических плоскостей имеют нормальные парафиновые углеводороды (см. рис. 35, а), нафтеновые и особенно ароматические углеводороды характеризуются меньшей величиной кристаллов и менее слоистым строением (см. рис. 35, б, в). При совместной кристаллизации твердых углеводородов в неполярных, растворителях образуются смешанные кристаллы, которые являются твердой фазой переменного состава, т. е. состав может меняться при сохранении однородности кристаллической структуры, что характерно для соединений, близких по строению молекул. В данном случае возможность образования смешанных кристаллов обусловлена наличием в молекулах твердых углеводородов длинных парафиновых цепей в основном нормального строения. При совместной кристаллизации из неполярнрй среды форма кристаллов остается орторомбической, а их размер зависит от содержания циклических углеводородов в смеси с парафиновыми чем больше циклических углеводородов, тем меньше размер кристаллов и число наслоений. [c.129]

    Парафино-нафтеновые углеводороды, полученные при адсорбционном разделении на силикагеле (АСК), отличаются высоким числом симметрии по-р.ядка 150) и низким значением интерцеита рефракции"(г,- 1,0327—1,0388), ято, доказывает присутствие значительного количества би- и полициклических нафтеновых углеводородов. Парафино-нафтеновые углеводороды, выделенные из фракций валенской нефти, отличаются низко температурой застыпапия (значительно более низкой, чем у других исследованных нефтей), ири этом иара-фино-нафтеновые углеводороды, выделенные из фракций валенской нефти, имеют, в отличие от углеводородов из других нефтей, более низкую температуру застывания, чем исходные фракции. Но самое основное отличие нарафино-нафте-новых углеводородов, полученных из фракций валенской нефти, заключается а следующем они не образуют комплекс с карбамидом. Это свидетельствует о том, что фракции валенской нефти практически не содержат парафиновых углеводородов нормального строения. [c.410]

    Проведенные нами исследования показали, что для получения авиабензина Б-91/115, т,е. товарной композиции с октановым числом по моторному методу не ниже 91, в качестве базового комгтонента необходимо брать катализат риформинга с октановым числом не менее 75 пунктов [47], при этом для достижения требуемой сортности бензина не ниже 115 риформат должен содержать не более 8% мае. парафиновых углеводородов нормального строения. Рассмотрение приведенных на рис. 5.1 и 5.2 данных показывает, что риформаты указанного качества легко могут быть получены при переработке фракции 62-140"С на катализаторе СГ-ЗП, при этом содержание ароматических углеводородов в них будет составлять от 35 до 47% мае. Следовательно, композиция на их основе, удовлетворяющая требованиям ГОСТ 1012-72 на авиабензин Б-91/115, должна содержать не более 25% алкилбензина (при содержании ароматических углеводородов в реформате 47%>). [c.127]

    Исследование ароматических углеводородов масляных фракций усложняется тем, что им всегда сопутствует большее или меньшее количество сероорганических соединений. Во фракциях ароматических углеводородов, выделенных из масляных дистиллятов или остатков даже так называемых бесоернистых нефтей, всегда содержатся эти соединения их тем больше, чем выше среднее число ароматических циклов в углеводородах, составляющих ароматическую фракцию. Обычный путь разделения нефтяных фракций на силикагеле или активной окиси алк>миния, позволяющий достаточно полно отделить нафтено-парафиновую часть нефтяной фракции от ароматической или с известным приближением разделить ароматические углеводороды друг от друга по числу колец в молекуле, большей частью неприменим для отделения ароматических углеводородов от сопутствующих им серосодержащих соединений. При разделении по этому методу сернистые производные даже неароматических углеводородов, т. е. содержащие алкильные или ацильные радикалы, попадают в аро- [c.17]

    Комплексообразование с карбамидом. В 1940 г. Бенген [1] открыл способность карбамида образовывать кристаллические комплексы с парафиновыми углеводородами нормального строения. Первые исследования, относящиеся к 1949—1950 гг. [2—8], показали, что комплекс с карбамидом могут образовывать кроме нормальных парафинов слаборазветвленные изопарафины с достаточно длинным прямым участком цепи, циклические углеводороды с боковыми цепями нормального строения, а также другие органические соединения, содержащие в молекуле длинные не-разветвленные углеводородные цепи, в частности спирты, кислоты, эфиры, моногалоидные производные нормальных парафинов и др. Неразветвленная часть цепи должна быть тем длиннее, чем больще пространственная нагрузка и число заместителей в молекуле. Свойство карбамида образовывать комплексы с соединениями, имеющими парафиновые цепи нормального строения, используется при изучении химического состава сложных органических смесей, в частности масляных фракций нефти, так как позволяет разделить сложную смесь углеводородов на узкие фракции по структуре парафиновых цепей и в промышленности для получения низкозастывающих топлив и масел. [c.196]

    Унифицированная методика, применяемая при исследовании нефтей [3] и утвержденная в 1960 г. Госпланом СССР, усовер-шенствова на. Предусмотрены более детальное исследование углеводородного состава бензиновых фракций (индивидуальный углеводородный состав, определение парафиновых углеводородов нормального и изомерного строения), установление содер-жа ния жидких парафинов в керосино-газойлевых фракциях и определение свойств дистиллятов и остатков, являющихся сырьем для вторичных процессов. [c.17]

    Выделенные в чистом виде н-парафины или изопарафнны могут быть идентифицированы с помощью газо-жидкостной хро.матогра-фии для окончательной идентификации необходимо получить в чистом виде индивидуальные парафиновые углеводороды с помощью препаративной хроматографии, либо четкой ректификации. Индивидуальные углеводороды анализируются определяются их простые и комбинированные константы, проводится элементны анализ, иногда спектральный анализ если это необходимо, проводят хи.мическую идентификацию. Классические примеры химической идентификации можно найти в работах В. В. Марковникова но исследованию кавказских нефтей. Так пз фракции 80—82° бакинской нефти Марковников выделил химическим путем метановый углеводород, общей формулы СтН , константы которого были близки к константам триметилпропилметана (/кип 78,5—79 "). Этот углеводород был идентифицирован следующим образом. [c.57]

    Во фракциях топлива ТС-1 из нефтей Коми АССР преобладают парафиновые углеводороды. Высокое содержание их в керосиновой фракции усинской нефти (64,6%) не позволяет получить из нее топлива ТС-1 и РТ. Из остальных исследованных нефтей прямой перегонкой может быть получено топливо ТС-1, а после гидроочистки с целью улучшения термической стабильности— топливо РТ. [c.169]

    Ремова М.М. Исследование парофазного процесса адсорбционного выделения н-парафиновых углеводородов из керосино-газойлевых фракций с помощью цеолита МдА. Дис. канд. техн. наук. Грозный, 1973, 120 с. [c.16]

    Сопоставление состава и свойств туймазинского парафина и индивидуальных парафинов С25—Сзо нормального строения показывает, что более низкомолекулярные фракции его (молекулярный вес 300—400, температура плавления 49—60° С) состоят преимущественно из предельных углеводородов нормального строения во фракциях парафина с молекулярным весом выше 400 заметно повышается доля разветвленных структур предельных углеводородов. Так, по данным, полученным при нитровании, фракция туймазинского парафина молекулярного веса 454 температура плавления 66° С) содержала уже только 56% углеводородов нормального строения. Около половины ф )акции составляли разветвленные формы парафиновых углеводородов, что приближает ее к шорсинскому церезину. Элементарный состав фракции с температурой плавления 68,8° С отвечает общей формуле H2n+i,5- Это указывает, что в ее составе уже появились парафиновые углеводороды с циклическими заместителями в длинной цепи. Таким образом, результаты исследования парафина из туймазинской нефти в общем согласуются с данными, полученными американскими исследователями для парафинов мидконтинентской нефти и советскими исследователями для парафинов грозненской нефти. [c.96]

    В-третьих, данные о зависимости свойств и реакционной способности высокомолекулярных углеводородов гибридного строения от строения молекулы, полученные на основе исследования синтетических углеводородов бинарных и многокомпонентных смесей, приготовленных из них, служат реперными точками при исследовании фракций высокомолекулярных углеводородов нефти. Эти объективные предпосылки, включая и появление более совершенной экспериментальной техники, появившиеся за последние несколько лет, позволяют более уверенно и оптимистически смотреть на ближайшие перспективы развития исследований высокомолекулярных соединений нефти. В этой связи заслуживают большого внимания недавно опубликованные [ИЗ] результаты исследования 70-градусной фракции высокомолекулярных углеводородов гюргянской нефти. Основная часть парафино-циклопарафиновых углеводородов этой фракции (более-60%, из которых 85% не образуют кристаллического комплекса с карбамидом) не дегидрируется в молекуле их, отвечающей общей формуле С24Н48, содержится 2 пятичленных кольца, остальную часть молекулы (56%) составляют парафиновые С-атомы. [c.247]

    Нормальный парафиновый углеводород можно удалить из смеси изомеров четкой ректификацией, так как температура кипения нор мальных парафинов всегда выше, чем у соответствующих изомеров Однако процесс четкой ректификации обходится довольно дорого поэтому понятно стремление к разработке одноходовых форм про цесса со значительной глубиной превращения. Это особенно отно сится к гексановой фракции, содержащей несколько близкокипя щих изомеров. В области высоких температур повышение глубины изомеризации вызывает усиление роли побочных реакций. Было проведено исследование параметров процесса изомеризации пента-новых и гексановых фракций на промышленном катализаторе, содержащем палладий на цеолитовом носителе (промышленный процесс изокел). Этот катализатор применяется при 330—370° С, т. е. при температурах, более низких, чем платиновый. Установлено, что решающими параметрами процесса являются температура и время контакта сырья с катализатором. Изменение давления в пределах 24—42 ат при данном времени контакта не изменяло результатов процесса. При давлении ниже 24 ат усиливались побочные реакции расщепления, а при давлении выше 42 ат уменьшалась глубина реакции. [c.258]

    Содержание парафиновых углеводородов в нефти и в продуктах ее переработки зависит от происхождения, способов и режимов получения нефтепродуктов. В нефтях содержание парафинов колеблется от долей процента до 20% (нефти Жетыбайского месторождения). Нефти Поволжья, по данным Сергиенко [106], содержат 2—5% парафина. Согласно исследованиям Саханена [102], в газойлевых и масляных фракциях зарубежных нефтей среднее содержание парафинов составляет 20—30%, достигая 48% для фракций нефтей месторождения Мичиган. В газойлевых фракциях нефтей из Калифорнии и Мирандо парафинов вообще не содержится. [c.21]

    Моноциклические ароматические углеводороды, образовав-шиеся в процессе дегидрирования нафтено-парафиновых частей фракций 180—200, 200—300 и 300—350 °С исследовали по спектрам поглощения в ближней ультрафиолетовой области. Вторичные моноциклические ароматические углеводороды фракции 180—200 °С представляют собой моно-, ди-, три- и тетразамещенные алкилбензолы. Вторичные бициклические углеводороды фракции 180—200 °С исследовали методом газожидкостной хроматографии и по спектрам поглощения в ультрафиолетовой области. При исследовании спектров поглощения (максимумы 2660, 2730, 2810, 2820. 3045, 3110 А минимумы 2400, 2690, 2800, 3090, 3120, 3190, 3320, 3335 А плечо 2460—2600, 2850—2900, 2920—2960, 3550—3650, 3750 А) установлено, что наряду с нафталиновыми хтлеводородами во вторичных бициклических ароматических углеводородах присутствует сложная смесь, состоящая из индановых углеводородов с заместителем у нафтенового-кольца. Нафталиновые углеводороды составляют 83,6%. [c.21]


Смотреть страницы где упоминается термин Исследование н-парафиновых углеводородов фракции: [c.104]    [c.116]    [c.136]    [c.138]    [c.149]    [c.203]    [c.203]    [c.43]    [c.80]    [c.49]    [c.491]    [c.157]    [c.30]    [c.55]   
Смотреть главы в:

Исследования в области химии нефти -> Исследование н-парафиновых углеводородов фракции

Исследования в области химии нефти -> Исследование н-парафиновых углеводородов фракции




ПОИСК





Смотрите так же термины и статьи:

Парафиновые углеводороды



© 2025 chem21.info Реклама на сайте