Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидроочистка бензинов термических процессов

    Сероводород может присутствовать в попутном газе, сопровождающем сернистые нефти, в растворенном состоянии в самих нефтях, в продуктах первичной перегонки нефти (газах, бензиновых дистиллятах и других светлых нефтепродуктах) или в продуктах вторичных термических процессов (термический и каталитический крекинг, каталитический риформинг, коксование остатков, гидроочистка, гидрокрекинг и др.). Наличие сероводорода в товарной нефти в значительной степени зависит от степени предварительной сепарации нефти, а также от метода эксплуатации месторождений. Поэтому в литературе можно встретить противоречивые данные па содержанию На8 для нефтей одних и тех же месторождений. Содержание сероводорода в нефтях представляет собой чрезвычайно важный показатель, так как оно определяет многие факторы, связанные [c.25]


    Процесс гидрокрекингу предназначен в основном для получения малосернистых топливных дистиллятов из различного сырья. Обычно гидрокрекингу подвергают вакуумные и атмосферные газойли, газойли термического и каталитического крекинга, деасфальтизаты и реже мазуты и гудроны с целью производства автомобильных бензинов, реактивных и дизельных топлив, сырья для нефтехимического синтеза, а иногда и сжиженных углеводородных газов (из бензиновых фракций). Водорода при гидрокрекинге расходуется значительно больше, чем при гидроочистке тех же видов сырья. [c.47]

    Сырье и продукция. Основным сырьем установок каталитического риформинга являются прямогонные бензиновые фракции, содержащие парафиновые, нафтеновые и ароматические углеводороды С —Сц. В сырье риформинга могут вовлекаться после глубокой очистки бензины вторичных процессов — термического крекинга и коксования, бензины — отгоны с установок гидроочистки керосинов и дизельных топлив, бензины гидрокрекинга и каталитического крекинга В качестве перспективного сырья рассматриваются бензины гидрогенизации углей и сланцев, а также бензины, получаемые из синтез-газа. При производстве высокооктановых компонентов бензина используются фракции, выкипающие в пределам 85—180 °С, при производстве ароматических углеводородов С —Сч — различные фракции, отбираемые в пределах от 65—70 до 140—150 °С. [c.123]

    Значительно труднее осуществить гидроочистку бензинов вторичного происхождения, например процессов термического и термоконтактного крекинга, коксования и др. Эти продукты содержат много сернистых и азотистых соединений, а также непредельных углеводородов. Например, серы содержится до 1 вес. %, а йодное число может быть более 100 г Ь/ЮО г [46]. В эхом случае сырье, пригодное для каталитического риформинга на алюмоплатиновом катализаторе, можно получить при проведении гидроочистки в две ступени. Первую ступень осуществляют в тех же условиях, что и очистку прямогонных бензиновых фракций. На второй ступени гидроочистке подвергают гидрогенизат первой ступени. [c.79]

    Разработаны различные варианты облагораживания бензинов термических процессов очистка на установках каталитического крекинга [321], селективная гидроочистка для удаления соединений серы и диеновых углеводородов [322, 323, 326], глубокое гидрирование в чистом виде [324], гидроочистка в смеси с прямогонными бензиновыми или дизельными фракциями [43-46, 235, 236, 324, 327]. [c.342]


    По схеме первого варианта. мазут высокосернистой нефти поД вергается деструктивно-вакуумной перегонке, остаток ДВП направляется на висбрекинг. Тяжелый остаток висбрекинга идет на коксование. Дистилляты термических про цессов с температурой кипения до 450°С подвергаются гидроочистке. Гидроочищенная фракция с температурой кипения выше 350° С направляется на каталитический крекинг. Бензиновые фракции от термических процессов подвергаются обессериванию и вместе с бензином гидроочистки направляются на каталитический риформинг. При переработке высокосернистой нефти ио этой схеме можно получить (% вес. от нефти)  [c.285]

    Требования к качеству сырья для установок каталитического риформинга зависят от назначения процесса и вида используемого катализатора. В Советском Союзе в качестве сырья риформинга используют прямогонные бензиновые фракции и в незначительных количествах — продукты вторичного происхождения бензины термического крекинга и коксования, бензиновые фракции с установок гидроочистки керосинов и дизельных топлив, тяжелые фракции рафинатов. В зарубежной промышленной практике в сырье риформинга нередко вовлекаются бензины гидрокрекинга и каталитического крекинга. [c.154]

    Так, увеличение степени сжатия в карбюраторных двигателях Вызвало ужесточение требований к детонационной стойкости бензинов (росту его октанового числа). Это стимулировало развитие процессов в нефтеперерабатывающей промышленности, целенаправленных на повышение октановых чисел авиационных и автомобильных бензинов — вначале термического, а затем и каталитического риформинга, полимеризации, алкилирования, изомеризации и др. Развитие и техническое совершенствование этих процессов органически связаны с ростом требований к октановой характеристике бензинов. Надежность и долговечность карбюраторных, дизельных и реактивных двигателей в значительной мере зависят от наличия в составе топлив сернистых, азотистых и других гетероатомных природных соединений. Для удаления этих соединений были разработаны и получили широкое распространение процессы гидроочистки топливных фракций — бензиновых, керосиновых, дизельных. В результате гидрооблагораживания снижается содержание гетероатомных соединений и ненасыщенных углеводородов, что повышает химическую и термическую стабильность топлив, надежность и ресурс работы двигателя. [c.42]

    Основная масса сераорганических соединений нефти почти всегда сконцентрирована в тяжелых фракциях в виде гетероциклических соединений ароматического ряда. Во фракциях прямогонных бензинов, выкипающих до 180 °С, содержатся меркаптаны и алифатические сульфиды [307, 308], которые гидрируются сравнительно легко. В бензинах вторичного происхождения (бензины термического крекинга, коксования и т. п.) среди сернистых соединений заметную роль играют тиофены. Они гидрируются с трудом и для их разрушения требуются более жесткие условия процесса (Рнг=3,0 МПа и выше, Г 700 К) [13]. В связи с этим для использования таких бензинов в качестве сырья риформинга требуется дополнительная гидроочистка. Прямогонные бензиновые фракции могут содержать до 0,5, а бензины термического крекинга или коксования до 1,5 мас.% серы [301]. [c.116]

    Систематизированных данных по вопросу распределения азотистых соединений по фракциям очень мало. Известно, что прямогонные бензиновые фракции содержат очень малые количества азотистых соединений (10 2 мас.%) [304], которые представлены пиридинами, пирролами и в высококипящих бензиновых фракциях хинолинами. В продуктах термической переработки встречаются первичные и вторичные амины [306]. Содержание азотистых соединений в бензинах вторичных процессов в 5—10 раз выше, чем в прямогонных [301]. Даже следы азотистых соединений могут вызывать серьезные сложности при хранении и переработке нефтяных фракций. Лучшим способом удаления их является гидроочистка. [c.150]

    Наряду с применением в качестве сырья фракций, полученных при прямой перегонке нефти, можно применять и бензиновые фракции, полученные от вторичных процессов — таких, как термический крекинг и коксование. Однако из-за наличия в них олефиновых а диолефиновых углеводородов, которые очень быстро отравляют катализатор, особенно платиновый, эти фракции предварительно-(перед каталитическим риформингом) подвергают гидроочистке. При гидроочистке непредельные углеводороды насыщаются водородом, превращаясь в предельные — парафиновые углеводороды-,, кроме того, удаляются другие вредные примеси (сернистые и азотистые соединения). [c.185]

    Лучшие технико-экономические показатели достигаются, если на комбинированных установках осуществляются процессы первичной перегонки нефти, термические и каталитические процессы. В Советском Союзе эксплуатируются такие установки ЛК-6у и ГК-3. На установке ЛК-6у скомбинированы процессы перегонки нефти, гидроочистки керосиновых и дизельных фракций, каталитического риформинга бензиновых фракций и газофракционирования (мощность только по перегонке нефти 6 млн. т/год). На установке ГК-3 комбинируется первичная перегонка нефти (3 млн. т/год) с термическим и каталитическим крекингом, а также стабилизацией бензина. [c.104]


    Завод проектировался двумя очередями. Первая очередь предусматривала объем переработки нефти в 8 млн.т в год и включала следующие технологические установки и объекты электрообессоливающую установку 10/6, атмосферно-вакуумную трубчатую установку АВТ-2 для переработки нефти в объеме 2 млн.т/год, атмосферную установку АТ-6 проектной мощностью 6 млн. т./год, установку термического крекинга мазута прямой гонки мощностью 0,6 млн.т/год, установки каталитического ри-форминга Л-35-11/300 и Л-35-11/600 — для ароматизации бензиновых фракций, получаемых на установках АВТ-2 и АТ-6, с целью производства высокооктановых компонентов автобензинов, и установки Л-24/6 и Л Г-24/7 для гидроочистки (обессеривания) дизельных фракций с целью получения малосернистого топлива с содержанием серы 0,2% и 0,5% установки производства элементарной серы (утилизация сероводорода, получаемого на установках гидроочистки, в процессе Клауса) и битумные установки 19/10 и 19/6 мощностью по 0,45 млн.т/год для производства дорожных и строительных битумов. Естественно, в первую очередь входил ряд объектов для обеспечения нормального функционирования технологических установок объекты паро-, тепло- и воздухоснабжения, электрообеспечения, водоснабжения и очистки зафязненных производственных сточных вод, межцеховые коммуникации, ремонтное производство, товарно-сырьевой цех для приема нефти и отгрузки товарной продукции и ряд других. [c.4]

    Наряду с фракциями прямой перегонки нефти можно применять и бензиновые фракции вторичных процессов — термического крекинга и коксования. Однако из-за наличия в них олефиновых и диолефиновых углеводородов, которые очень быстро отравляют катализатор, особенно платиновый, эти фракции предварительно (перед каталитическим риформингом) следует подвергать гидроочистке. При гидроочистке непредельные углеводороды насыщаются водородом, превращаясь в предельные — парафиновые углеводороды кроме того, удаляются другие вредные примеси (серо- и азотсодержащие соединения). Этих соединений во фракциях, полученных при переработке сернистых и особенно высокосернистых нефтей, содержится значительно больше, чем в соответствующих фракциях из малосернистых нефтей. Поэтому для предупреждеиия отравления платинового катализатора и улучшения показателей работы установок каталитического риформинга сырье, получаемое из сернистых и высокосернистых нефтей, перед каталитическим риформингом также подвергают гидроочистке. Гидроочистка бензиновых фракций осуществляется в отдельном реакторе на алюмокобальтмолибденовом или алюмоникельмолибденовом катализаторе при 350—375° С, давлении 3,4—4 МПа (34—40 кгс/см ), объемной скорости подачи сырья 3,5—5 ч и циркуляции водородсодержащего газа до 550 м /м сырья. После гидроочистки содержание серы в сырье, поступающем на каталитический риформинг, снижается до 2-10- %. [c.168]

    Современные схемы неглубокой переработки нефти иногда ие включают установок ни термического, ни каталитического крекинга. Кроме установки перегонки нефти на несколько узких фракций предусмотрена гидроочистка отдельных компонентов и в некоторых случаях более широких фракций, которые затем разделяют на более узкие путем вторичной перегонки. Котельное топливо компаундируют из остатков перегонки и тяжелых дистиллятных компонентов, не подвергающихся гидроочистке. Автомобильный бензин с достаточно высоким октановым числом получают в процессе каталитического риформинга тяжелого бензина прямой перегонки. Однако заводы, сооруженные по такой схеме, как правило, нмеют чисто топливный профиль. При необходимости поставлять сырье для нефтехимического синтеза в состав завода включают крекинг-установки или направляют часть малоценных сернистых дистиллятов на установки пиролиза, принадлежащие нефтехимическим заводам. Подробное направление переработки свойственно некоторым нефтеперерабатывающим заводам Западной Европы, сооруженным в 1960 г. На рис. 116 представлена типичная схема глубокой переработки сернистой пефти. Нефть после двухступенчатой электрообессоливающей установки (на схеме не показана) поступает иа атмосферновакуумную перегонку, в результате которой получается несколько светлых дистиллятов, тяжелый газойль и гудрон. Головку бензина и фракцию реактивного топлива после очистки направляют на смесительную станцию для компаундирования. Фракцию тяжелого бензина подвергают каталитическому риформингу для получения высокооктанового компонента бензина или ароматических углеводородов. Кроме того, риформингу подвергается бензиновый дистиллят коксования. Оба компонента сырья предварительно проходят гидроочистку. Предусмотрена экстракция ароматических углеводородов из жидких продуктов риформинга, которая при получении на установке риформинга бензина служит одновременно для отделения и возврата на повторный риформинг непревращенной части сырья. Полученный экстракт путем ректификации разделяют на требуемые компоненты или углеводороды. Керосиновый дистиллят и легкий газойль проходят гидроочистку и используются после этого как компоненты дизельного топлива. Тяжелый вакуумный газойль подвергают каталитическому крекингу в смеси с газойлем коксования. Для увеличеиия выхода светлых на установке каталитического крекинга предусмотрена рециркуляния. Гудрон поступает на установку коксования жидкие продукты этого процесса являются сырьем для установок каталитического риформинга и каталитического крекинга, о чем было упомянуто выше легкий газойль коксования после гидроочистки использустся как компонент дизельного топлива. Кроме того, на установке получают кокс, который можно [c.356]

    Сырьем процесса каталитического риформинга являются низкооктановые бензины, получаемые при прямой перегонке нефти с пределами выкипания от 60 до 180° С. Для получения ароматических углеводородов, риформируются фракции 60— 140° С, для получения бензола — фракция 60—85° С, толуола — фракция 85—120° С, ксилолов — фракция 120—140° С, для получения высокооктановых автомобильных бензинов — фракции 85 180° С. Сырьем для каталитического риформинга могут служить бензиновые фракции, получаемые в процессах термического крекинга и коксования. Это сырье в связи с высоким содержанием в нем олефиновых и диеновых углеводородов предварительно подвергается гидроочистке для насыщения их водородом и удаления вредных сернистых и азотистых соединений. [c.188]

    Подготовка сырья. В качестве сырья риформинга применяют бензиновые фракции не только прямой перегонки нефти, но и вторичных процессов — термического крекинга и коксования. Однако из-за наличия в них олефиновых и диолефиновых углеводородов, которые очень быстро отравляют катализатор, особенно платиновый, эти фракции предварительно следует подвергать гидроочпст-ке. При гидроочистке непредельные углеводороды насыщаются водородом, превращаясь в предельные (парафиновые) углеводороды кроме того, удаляются вредные примеси (серо- и азотсодержащие соединения). Количество последних во фракциях, полученных при переработке сернистых и особенно высокосернистых нефтей, значительно больше, чем в соответствующих фракциях из малосернистых нефтей. Кроме того, иногда риформингу подвергают смесь бензиновых фракций прямой перегонки западносибирских нефтей и газоконденсата (в частности, Вуктыльского месторождения). Содержание в них шестичленных нафтеновых углеводородов соответственно равно 9,5 и 21% (масс.). В работе [68] отмечена нецелесообразность переработки в смеси такого ценного сырья, как вуктыльский газовый конденсат. [c.116]

    При возрастающем дефиците прямогонных бензиновых фракций перспективным сырьем каталитического риформинга могу быть бензины термодеструктивных процессов. Необходимым условием риформиро-вания такого сырья является его предварительная гидроочистка. Лля подготовки бензинов термического крекинга (БТК) к риформированию на Ново-Уфимском НПЗ разработана и внедрена в 1987 г. технология гидроочистки БТК в смеси с дизельным топливом. Согласно данной технологии шрокая фракция бензина термокрекинга в смеси с дизельным топливом (до 30 направляется на гидроочистку в реакторный блок установки ЛЧ-24-7. Полученный гидроганизат подвергается стабилизации и ректификации с выделением фракций н.к. - 80 и 80--180°С. Фракция н.к.- 80°С вовлекается в товарную композицию бензина А-76, фр. 80-180°С в сырье каталитического риформинга установки Л-35-11-1000 [I]. [c.138]

    Содержание меркаптанов в бензиновых дистиллятах восточных нефтей весьма различно [211. Большое количество их присутствует в товарных бензинах. Улучшение качества автобензинов, вырабатываемых из сернистых и нысо-косернистых нефтей, и повышение их октановых чисел в значительной степени определяется процессами гидроочистки и каталитического риформинга. Тем не люнее определенное место в технологии нефтепереработки должно быть отведено и химической демеркаптанизации, особенно в тех случаях, когда обработанный бензин непосредственно можно использовать для приготовления товарных продуктов (например, после очистки от меркаптанов относительно высокооктановых головных фракций прямой перегонки и термического крекинга). При демер-каитанизации головной бензиновой фракции легкого крекинга мазута или гудрона арланской нефти содержание серы снижается в 3 раза при сохранении октанового числа, равного 74—75. Эта же фракция до очистки с 1 мл ТЭС на [c.84]

    Как уже отмечалось, при хорошей стабилизации бензиновых дистиллятов с депропанизацией и частичной дебутанизацией в них теоретически не должно содержаться сероводорода. Однако на практике в бензиновых дистиллятах после стабилизации могут присутствовать следы сераводорода, кроме того, в бензиновых дистиллятах, выделяемых из некоторых сортов сернистых и вы-сокосернистых нефтей прямой перегонкой, а также получаемых в результате термических или термокаталитических процессов, остаточное содержание серы и после удаления части меркаптанов может оказаться достаточно высо-ки.м, а для приготовления из них товарных бензинов требуется более глубокая очистка. В этом случае обработка бензинов щелочью или другими реагентами должна быть дополнена гидроочисткой, которая является универсальным методом удаления из моторных топлив всех содержащихся в них сернистых соединений. [c.154]

    О Ш)а. При гидроочистке фракций вторичного проис-ховдения - газойлей термического крекинга и коксования -необходимо гидрирование олефинов и хотя бы частичное гидрирование ароматических углеводородов с целью повышения цетанового числа получаемого дизельного топлива. Поэтому давление процесса повышают до 10-14 Ша. На практике гидроочистку фракций вторичного происхождения проводят в смеси с прямого ными фракциями при давлении порядка 5,0 МПа. Степень обессеривания, как правило, выше 90 (до 95-97 ), непредельные углеводороды гидрируются на 80-90 . При гидроочистке дизельного топлива получают до 3 бензиновых фракций с октановым.числом ниже 50 по моторному методу. Бензин направляют на каталитический риформинг. [c.8]

    В перспективной схеме БашНИИ НП не предусматриваются широко применяемые при переработке сернистых нефтей типа ромашкинской процессы термического и каталитического крекирования и вакуумной перегонки. В этой схеме применяются процессы атмосферной перегонки, комбинированные с коксованием остатков этой перегонки, процессы каталитического риформинга и гидроочистки. Коксование остатков атмосферной перегонки позволит вырабатывать сравнительно небольшие количества бензиновых фракций, некоторое количество газов для нефтехимической промышленности, дизельное топливо, значительное количество дистиллятного котельного топлива с содержанием серы до 3,5% и с незначительным содержанием ванадия и небольшое количество кокса. Предусмотренный схемой каталитический риформинг позволит вырабатывать высокооктановые компоненты автомобильного бензина и одновременно получать попутный газ, содержащий водород, который будет использован для гидроочистки высокосернистых дистиллятов. [c.41]


Смотреть страницы где упоминается термин Гидроочистка бензинов термических процессов: [c.42]    [c.22]   
Смотреть главы в:

Глубокая переработка нефти -> Гидроочистка бензинов термических процессов




ПОИСК





Смотрите так же термины и статьи:

Процессы гидроочистки



© 2025 chem21.info Реклама на сайте