Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные ионы и разряд

    Анодное растворение металла с переходом его в раствор в виде простых гидратированных (или в виде комплексных) ионов во многом представляет собой обращение процесса катодного выделения металлов. Анодный процесс начинается с разрушения кристаллической решетки и заканчивается образованием ионов металла в растворе вместо стадий формирования кристаллической решетки появляются стадии ее разрушения, вместо разряда ионов — ионизация атомов металла и т. д. Общую реакцию анодного растворения металла, если образуются простые гидратированные ноны, можно записать в виде уравнения [c.475]


    Линд предложил видоизмененную ионную теорию механизма химического действия разряда, известную под названием теории ионных групп, или комплексных ионов. Согласно этой теории , вокруг иона группируются молекулы, имеющие или постоянный дипольный момент или момент, индуцированный полем иона, т. е. система представляет собой комплексный ион, сохраняющийся как единое целое в электростатических полях. При столкновении с частицей, имеющей заряд противоположного знака, центральный ион нейтрализуется и выделяющаяся при этом энергия используется на химическую активацию окружающих его молекул. Например, разложение водяного пара может, по Линду, протекать по следующей схеме  [c.252]

    В том случае, когда в растворе присутствуют два или несколько видов комплексных ионов (различные комплексообразователи), при малых плотностях тока в электродной реакции участвуют наименее прочные комплексы, т.е. комплексы с наибольшей величиной константы нестойкости. Так, например, в пирофосфатном электролите при малых плотностях тока идет разряд ионов  [c.398]

    Разряд на катоде комплексных ионов металлов [c.29]

    Такой предельный ток называется кинетическим. Стадия диссоциации может быть лимитирующей, например, при разряде комплексных ионов на электроде. Кинетические токи часто встречаются при электрохимических процессах с участием органических веществ. [c.401]

    Лайонс [273] полагает, что переходные металлы образуют внутриорбитальные комплексные ионы, разряд которых протекает с высоким перенапряжением. Причиной высокой энергии активации переходных металлов может служить также их ярко выраженная склонность к пассивированию вследствие образования на поверхности металла окисных пленок. Металлы, выделившиеся на катоде, покрываются окисной пленкой и разряд их можег прекратиться. [c.79]

    Основными элементарными стадиями процесса восстановления ионов металла в простейшем случае являются доставка ионов из объема раствора к поверхности металла, разряд ионов и образование кристалла. В более сложных случаях, например при выделении металлов из комплексных ионов, разряду могут предшествовать гомогенные или гетерогенные химические реакции. Процесс разряда может сопровождаться также адсорбцией ионов металла или компонентов раствора на электроде и другими поверхностными явлениями (промежуточное образование оксидов, а затем их восстановление) и т. д. [c.13]


    Скорость протекания всего процесса в целом контролируется стадией, сопровождающейся наибольшими торможениями. Причинами торможения могут быть замедленная доставка разряжающихся ионов к катоду — концентрационное перенапряжение (1-я стадия) замедленный разряд ионов, который обусловлен медленным переносом заряда через двойной электрический слой и связанным с этим изменением физико-химического и энергетического состояния ионов (дегидратация, десольватация, распад комплексных ионов и др.) — электрохимическое перенапряжение (2-я стадия) трудности, связанные с построением кристаллической решетки замедленная диффузия ад-атомов (ад-ионов) по поверхности катода к местам роста кристаллов, задержка при вхождении атомов в кристаллическую решетку или при образовании двух- или трехмерных кристаллических зародышей, т. е. то, что характеризует так называемое кристаллизационное перенапряжение (3-я стадия). Величина последнего сравнительно невелика и зависит от природы металла и от состояния поверхности катода, которое в ходе электролиза меняется в результате адсорбции посторонних ионов, молекул и органических веществ. [c.335]

    Высокая катодная поляризация в цианистых электролитах обусловлена, по-видимому, теми затруднениями, которые определяются природой комплексных ионов и механизмом их разряда, а также характером изменения энергетического состояния поверхности катода при электролизе. [c.340]

    Согласно этой схеме при разряде комплексного аниона воссоединение электрона с центральным ионом (Ме) и освобождение иона СМ представляют собой одновременно протекающий процесс. При этом состав разряжающихся ионов может отличаться от состава преобладающих в растворе комплексных ионов. [c.341]

    Из имеющихся в литературе ограниченных сведений о потенциалах электрохимических реакций (табл. 62) видно, что согласно величинам стандартных потенциалов реакций разряда и образования комплексных ионов имеется теоретическая вероятность раздельного образования ионов на аноде и их разряда на катоде. Что же касается практического осуществления, то необходимо учитывать концентрацию комплексов в растворе, пассивирование анода и скорость разряда комплексных анионов (катодная поляризация). [c.258]

    На опыте стадии образования новой фазы, поверхностной диффузии адатомов и встраивания их в кристаллическую решетку не всегда оказываются наиболее медленными в процессе электрокристаллизации. Так, часто замедленной оказывается стадия разряда ионов раствора. При электрокристаллизации из комплексных электролитов медленными могут оказаться реакции диссоциации комплексных ионов, Пере- [c.327]

    На опыте стадии образования новой фазы, поверхностной диффузии адатомов и встраивания их в кристаллическую решетку не всегда оказываются наиболее медленными в процессе электрокристаллизации. Так, часто медленной оказывается стадия разряда ионов раствора. При электрокристаллизации из комплексных электролитов медленными могут оказаться реакции диссоциации комплексных ионов X. Геришер, В. И. Кравцов и др.). Перенапряжение электрокристаллизации может быть обусловлено медленным протеканием нескольких стадий и необходимо использовать особые экспериментальные приемы для того, чтобы разделить суммарное перенапряжение на составляющие, отвечающие отдельным стадиям. [c.342]

    Так, в последние годы были особенно подробно изучены закономерности разряда водородных и частично металлических ионо , исследовалась кинетика обмена между амальгамами и ионами металлов, реакции взаимодействия простых и сложных комплексных ионов на катоде с перезарядкой или восстановлением их до металла и ряд других существенных проблем. [c.7]

    Процессу разряда кобальта и никеля часто, очевидно, предшествует реакция десольватации или диссоциация комплексного иона [925, 993, 955, 928]. Большое значение для электродного процесса имеют обменные реакции между анионами фона и окружением катионов N 2+ и Со + [1276, 944, 945, 943, 938], а также адсорбционные процессы на поверхности катодов с участием молекул растворителя, фонового электролита и образующихся комплексов исследуемых металлов [681, 684, 680, 470, 944, 945]. [c.99]

    Согласно теории комплексообразования, коллоидные соединения образуют комплексы с катионами металлов. Вследствие прочной адсорбционной связи между органическими коллоидами и катионами металлов процесс разряда комплексных ионов замедляется, поэтому разряд металла на катоде в присутствии коллоидной добавки протекает при повышенной поляризации. Поверхностноактивные вещества могут адсорбироваться либо всей поверхностью катода, либо отдельными участками его поверхности. В первом случае разряд катионов осуществляется через сплошную пленку адсорбированного вещества, во втором — разряд катионов и осаждение металла происходят только на свободных участках поверхности катода. [c.132]


    До недавнего времени при исследовании многостадийных процессов, сопровождающих электролиз, усилия электрохимиков были сосредоточены на выборочном, иногда случайном выявлении природы некоторых промежуточных стадий на электродах. Эти промежуточные реакции рассматривались в отрыве от остальных как единственные, определяющие собой скорости суммарного электродного процесса. В настоящее время, в значительной степени благодаря фундаментальным работам советских электрохимиков, все большее внимание уделяется выяснению взаимосвязи между различными промежуточными стадиями процесса, в особенности между адсорбционными, химическими и электрохимическими явлениями, что несомненно способствует выявлению истинного механизма разряда (ионизации). При этом исследуют различные электролиты (водные, органические, расплавленные, твердые, содержащие простые и комплексные ионы, способные восстанавливаться или окисляться на электродах). [c.503]

    Вместе с тем представления о разряде простых ионов в комплексных электролитах встречают серьезные возражения. Расчет показывает, что число простых ионов в некоторых цианистых электролитах должно быть исчезающе малым. По-видимому, в этом случае происходит непосредственный разряд адсорбированных комплексных анионов. Однако для простоты и удобства в дальнейшем мы будем пользоваться схемой, по которой выделение металла происходит в результате разряда простых ионов, образующихся при диссоциации комплексных ионов. [c.172]

    Особенно подробно изучены закономерности совместного разряда водородных и металлических ионов, кинетика обмена между амальгамами и ионами металлов, реакции взаимодействия простых и сложных комплексных ионов с растворителем при вхождении их в двойной слой с перезарядкой или восстановлением до металла. [c.503]

    В том случае, когда в растворе присутствует несколько видов комплексных ионов, в электродной реакции участвуют наименее прочные комплексы, т. е. комплексы с наибольшей величиной константы нестойкости. Так, например, в пирофосфатном электролите при малых плотностях тока идет разряд ионов  [c.245]

    При помощи полярографического метода можно исследовать процессы комплексообразования в растворах электролитов. Предположим, например, что в растворе происходит реакция образования комплексного иона М" + тХ МХ с константой устойчивости рг=[МХт1/ [М" ][Х] , а затем частица МХ подвергается электровосстановлению ЛХт+пе- М+тХ. При большой величине Рг и избытке X практических все ионы М + связаны в комплекс, а потому концентрация Со= = [МХ ]. Если разряд МХт происходит на амальгаме металла М, то по уравнению Нернста имеем [c.187]

    Механизм электровосстановления комплексов металла через предварительную адсорбцию их на поверхности электрода был рассмотрен Е. Лайонсом. Он допускает, что во внутреннюю координационную сферу восстанавливающегося комплекса входит молекула воды или другой лиганд, адсорбированный на поверхности металлического электрода, играющий роль мостика между электродом и центральным ионом металла. Войдя в двойной электрический слой, комплексный ион претерпевает деформацию. По достижении достаточного потенциала сложный ион разрывается, при этом катион металла под влиянием электрического поля входит в сферу влияния электронов кристаллической решетки осадка, а освободившиеся простые анионы вытесняются из двойного слоя в раствор. При этом при соответствующем потенциале не исключена возможность выхода электрона из катода на адсорбированный диполь и его разряд в жидкой фазе (туннельный эффект). [c.399]

    На катоде происходит разряд Н — ионов с образованием газообразного водорода, а также разряд ионов Си" , d образующихся при диссоциации комплексных ионов, содержащих N-группы [ u( N)3] [Zn( N)4] - и др. [c.209]

    Определение ЗЬ с применением ртутных электродов основано а использовании двух электродных процессов разряда сольва-тированных или комплексных ионов ЗЬ(1П) [c.62]

    В работах [182, 183] предполагается, что выделение кадмия нз иодидных растворов в ДМФ происходит с участием иодидных комплексов состава [СсИг+.х] . При малых перенапряжениях разряжаются простые сольватированные ионы кадмия, возникающие в результате химической реакции диссоциации комплекса, при больших перенапряжениях скорость процесса определяется разрядом комплексов. Оптимальным соотношением между мольными концентрациями иодида кадмия н тетрабутиламмоний-иодида является 1 2 что соответствует образованию комплексных ионов [c.56]

    В обоих случаях [т. е. в выражениях (109) и (ПО)] последний член уравнений отвечает дополнительному (по отношению к диффузионной волне разряда комплексного иона) сдвигу волны, обусловленному ее кинетическим характером при ступенчатом комплексообразовании. [c.356]

    Значения велинин а и й в этом выражении отражают две совместно протекающие элвктрохимияесвие реакции — восстаиовленда комплексного иона с выделением меди и разряд иоиов водорода. [c.30]

    Р. Каишев, Е. Будевский и сотрудники показали, что уравнения (УИ1.101) и (УП1.Ю2) выполняются только при особых условиях проведения электрокристаллизации (монокристаллические бездислока-ционные грани, электролиз с использованием импульсов тока или потенциала определенной длительности и формы). На реальных элект-)одах стадия образования зародышей не является лимитирующей. 3 зависимости от условий скорость электроосаждения определяется диффузией ионов к поверхности электрода, стадией разряда ионов, поверхностной диффузией разрядившегося иона (такой ион называют адионом или адатомом) или стадией встраивания адиона в кристаллическую решетку. Особую роль в процессах электрокристаллизации играет наличие винтовых дислокаций, ступеней атомной высоты и макроступеней. Часто при электрокристаллизации используют не простые, а комплексные элактролиты. В таких условиях могут оказаться медленными химические стадии диссоциации комплексных ионов, предшествующие процессу осаждения металла. [c.208]

    Предположение о непосредственном восстановлении комплексного иона подтверждается рядом исследований. Так, было показано, что на катоде проходят процессы разряда ионов СгР , НеО , 1п01 Ag(NHз) , Си(Р207)2 , и др. При адсорбции сила связи с ад- [c.399]

    Отличие механизма и кинетики разряда простых и комплексных ионов должно существенно отразиться на характере действия ПАВ, добавляемых при электроосаждении металлов. Все же принципиально возможно использовать органические добавки при электроосаждепии и ионизации ряда металлов и из комплексных электролитов. При этом во всех случаях степень торможения зависит от относительного расположения рабочих потенциалов фг и потенциала нулевого заряда металлического электрода ф . [c.522]

    Вместе с тем, при изучении разряда рюмплексных ионов цинка, кадмия, серебра, ртути и других металлов пришли к выводу, что в большинстве случаев на катоде разряжаются ионы с меньшим числом комплексообразующих лигандов, чем преобладающие комплексные ионы в растворе. [c.243]

    Иногда применяют карбоксилатные, цитратные и малонатные буферные смеси, которые могут образовывать комплексные соединения с ионами металлов. Среды, не образующие комплексных ионов, обычно содержат перхлорат-анионы. Последние разряжаются при высоких анодных потенциалах и лишь в немногих растворителях (ацетонитрил, нитрометан) окисляются раньше, чем растворитель. При работе с перхлоратами необходима осторожность, поскольку они взрывоопасны. Особенно опасно упаривание растворов перхлоратов металлов в органических растворителях. Если это необходимо, то его следует проводить в вакууме при пониженных температурах. При исследованиях в органических растворителях применяют также соли, содержащие тетрафторборат-, гексафтор-фосфат- и тетрафенилборат-анионы, которые невзрывоопасны. Потенциалы разряда 0,1 моль/л растворов этих солей в ацетонитриле достигают 2,9-3,0 В. [c.98]

    В работах [164, 165] исследовано электроосаждение меди на вращающемся дисковом медном электроде из растворов бензолсульфоната меди в диметилформамиде в присутствии бензолсульфокислоты (БСК). Катодный процесс выделения меди протекает с высоким перенапряжением, так как медный электрод в диметилформамиде пассивируется. Выделение меди происходит при перенапряжении 400—500 мВ. При добавлении БСК на начально.м участке поляризационной кривой скорость процесса контролируется скоростью переноса заряда, так как ток не зав5у ит от скорости вращения электрода. Авторы считают, что в этом случае разряжаются комплексные ионы меди состава [Си(СбН550з)4]2 , скорость-разряда которых значительно выще, чем сольватированных ионов Си . При наличии свободной БСК разряжаются комплексные ионы с участием адсорбированных на электроде анионов БСК- Наличие адсорбционного слоя снижает энергию активации разряда в результате облегчения процесса переноса иона меди из комплекса в адсорбционный слой. [c.48]

    Разряд-ионпзация в хлоридных растворах в ДМФ происходит, как и в ДМА, стадийно, с замедленным присоединением первого электрона в катодном процессе при участии комплексного иона 7пС1б . [c.54]

    В неперемешиваемом электролите при больших потенциалах покрытия получаются серыми матовыми с порошкообразным черным налетом, а при перемешивании — качественными светлыми и полублестящими. Повышение концентрации сульфата кобальта в электролите приводит к снижению предельного тока разряда комплексных ионов платины. Наиболее высокими магнитными параметрами обладают покрытия, полученные в интервале потенциалов от — 450 до — 500 мВ. [c.193]

    Кинетические ограничения полярографического тока при разряде комплексных ионов металлов были впервые обнаружены И. Корытой и И. Кесслером [215] при изучении восстановления на капельном электроде ионов кадмия, свинца (II), цинка, меди (II) и индия (II) в присутствии нитрилотриуксусной кислоты (ком-плексона I). [c.42]

    И. Корыта теоретически разобрал различные случаи разряда комплексных ионов [233] обратимого и необратимого, ограниченного диффузией или скоростью диссоциации, и привел таблицу уравнений волн, зависимости от периода капания и концентрации комплексообразователя для рассмотренных случаев. Корыта рассмотрел также обпщй вопрос о влиянии комплексообразования на полярографические волны [234] и привел методы определения констант нестойкости комплексов и констант скорости их диссоциации из полярографических данных. [c.45]


Смотреть страницы где упоминается термин Комплексные ионы и разряд: [c.164]    [c.467]    [c.52]    [c.247]    [c.352]    [c.52]    [c.34]   
Введение в электрохимию (1951) -- [ c.628 ]




ПОИСК





Смотрите так же термины и статьи:

Ионов разряд

Ионы комплексные

Механизм разряда комплексных ионов

Поляризация разряда комплексных ионо

Разряд на катоде комплексных ионов металлов



© 2025 chem21.info Реклама на сайте