Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водная очистка от двуокиси углерода

    Ацетилен десорбируют из водного раствора, понижая давление с 19 до 0,05 ата в четыре ступени до 2, до 1, до 0,15 и до 0,05 атл. В первой ступени из раствора выделяется 45%-ный ацетилен, который возвращают в компрессор и оттуда обратно в водяной скруббер. Во второй ступени выделяется 90%-ный ацетилен. Газы, десорбированные в трех последних ступенях, смешивают и подвергают дополнительной очистке, с тем чтобы получить 97%-ный ацетилен. Диацетилен и другие g—С4-углеводороды с высокой степенью ненасыщенности, не удаленные вместе с ароматическими углеводородами при предварительной очистке, отмывают минеральным маслом, а затем серной кислотой. Двуокись углерода поглощается 0,5%-ным водным раствором едкого натра. В результате такой обработки получают 97—98%-ный ацетилен, содержащий до 1% СО2 и 2% инертных газов. Если к ацетилену примешаны значительные количества двуокиси углерода, отмывка последней разбавленным раствором едкого натра представляет, по-видимому, некоторые затруднения [8]. На рис. 29 приведена упрощенная схема такого метода концентрирования ацетилена. [c.281]


    Водная очистка основана на том, что в воде двуокись углерода хорошо растворяется. Конвертированный газ под давлением 25—30 am поступает в нижнюю часть насадочной башни, орошаемую водой. Промытый газ выводится из верхней части башни. Вытекающая из башни вода подается на турбину, где ее давление снижается, и из нее выделяется поглощенная углекислота. Вода вновь поступает на орошение абсорбционных башен. [c.94]

    Перед отмывкой окиси углерода из конвертированного газа жидким азотом при низких температурах необходимо предварительное сжатие газа и очистка его от двуокиси углерода и окислов азота. Двуокись углерода легко сжижается (критическая температура 31,1 °С) и при температуре ниже —70 °С затвердевает. Поэтому до охлаждения газовой смеси необходимо удалить из нее СО2, чтобы не происходила забивка аппаратуры твердой двуокисью углерода. При больших концентрациях ее удаляют сначала водой под давлением или раствором моноэтаноламина, а затем— водным раствором щелочи (стр. 218 сл.). До щелочной очистки из конвертированного газа необходимо удалить окислы азота, которые могут образоваться при высокой температуре в конверторе метана. Присутствие окислов азота в аппаратах низкотемпературного блока отмывки газа жидким азотом весьма нежелательно и опасно, так как окислы азота могут образовывать с органическими веществами, содержащимися в газовой смеси, различные нитросоединения, способные самопроизвольно разлагаться со взрывом.. [c.259]

    К грубым методам очистки газовых смесей от двуокиси углерода относится водная очистка. Это простая физическая абсорбция СОг водой является одним из наиболее старых методов удаления двуокиси углерода. При растворении в воде двуокись углерода в основном находится в свободном виде, но частично образует угольную кислоту, которая легко диссоциирует на ионы. [c.34]

    Диацетилен и другие высшие непредельные углеводороды Сд— С4, не удаленные вместе с ароматическими углеводородами при предварительной очистке, поглощают минеральным маслом, а затем серной кислотой. Двуокись углерода поглощается 0,5%-ным водным раствором едкого натра. В результате такой очистки получается 97—98%-ный ацетилен. [c.131]


    Водная очистка основана на различной растворимости в воде отдельных компонентов, входящих в состав конвертированного газа. По сравнению с другими компонентами сероводород и двуокись углерода хорошо растворяются в воде. Например, растворимость двуокиси углерода соответственно в 85 и 78 раз больше растворимости водорода и азота, а растворимость сероводорода в свою очередь в 2,5 раза больше растворимости двуокиси углерода. [c.33]

    При водной очистке конвертированный газ поступает в скруббер, орошаемый водой под давлением 16 ат. Стекая по насадке скруббера, вода поглощает двуокись углерода и сероводород из газа, который движется снизу вверх. Полной очистки газа от двуокиси углерода достигнуть не удается. Очищенный газ содержит примерно 1,5—4,5% СОа. [c.34]

    Процесс селективной абсорбции СОг водными растворами моноэтаноламина (МЭА) позволяет почти полностью извлечь СОг из газа и получить высококонцентрированную двуокись углерода, что имеет большое значение как для производства мочевины из СОг синтез — газа, так и для очистки технологического газа в производстве аммиака. Применение пенного режима позволяет значительно интенсифицировать процесс абсорбции СОг растворами МЭА. Следует отметить, что гидродинамические условия обработки газов растворами МЭА —пенообразующими жидкостями — при пенном режиме изучены недостаточно. Проведенные нами исследования показали возможность применения растворов МЭА в пенных аппаратах. При этом были выявлены некоторые особенности вспенивания. Важнейшими из них являются следующие 1) свежие растворы МЭА имеют максимум на кривых высота пены — скорость газа при скорости газа 0,3—0,4 м сек 2) с увеличением степени карбонизации растворов МЭА пенообразующая способность их снижается 3) влияние высоты исходного слоя жидкости на высоту пены увеличивается с возрастанием линейной скорости газа. [c.24]

    В тех случаях, когда двуокись углерода поступает на синтез карбамида, концентрация примесей в ней строго ограничивается, поэтому необходимо проводить дополнительную очистку газа. Например, в случае абсорбции под давлением концентрация водорода в двуокиси углерода может достигать 1—2%. Чем выше давление, тем больше концентрация водорода. Это объясняется в первую очередь различной зависимостью растворимостей двуокиси углерода и водорода от давления. Чем выше давление, тем меньше коэффициент селективности водного раствора МЭА. [c.131]

    Диацетилен и другие высшие ненасыщенные Сд—С4-углеводороды, не удаленные вместе с ароматическими углеводородами при предварительной очистке, поглощают минеральным маслом, а затем серной кислотой. Двуокись углерода поглощается 0,5-процентным водным раствором едкого натра. В результате такой очистки получают 97—98-процентный ацетилен, содержащий до 1% двуокиси углерода и 2% инертных газов. Если к ацетилену примешано значительное количество двуокиси углерода, отмывка последней разбавленным раствором едкого натра, повидимому, представляет некоторое затруднение [12]. На рис. 28 приведена упрощенная схема получения концентрированного ацетилена. [c.260]

    Ацетилен десорбируют из водного раствора, понижая давление с 19 до 0,05 ата в четыре ступени до 2, до 1, до 0,15 и до 0,05 ата. В первой ступени из раствора выделяется 45%-ный ацетилен, который возвращают в компрессор и оттуда обратно в водяной скруббер. Во второй ступени выделяется 90%-ный ацетилен. Газы, десорбированные в трех последних ступенях, смешивают и подвергают дополнительной очистке, с тем чтобы получить 97%-ный ацетилен. Диацетилен и другие Сз—С4-углеводороды с высокой степенью ненасыщенности, не удаленные вместе с ароматическими углеводородами при предварительной очистке, отмывают минеральным маслом, а затем серной кислотой. Двуокись углерода поглощается [c.281]

    Интерес к разработанному Клаусом процессу возродился после того, как было установлено, что при определенных рабочих условиях водные растворы аммиака избирательно абсорбируют сероводород из газов, содержащих также двуокись углерода. Было предложено сравнительно большое число процессов, основанных на этом принципе некоторые из них были осуществлены в опытном или промышленном масштабах. Эти разработки относятся к последнему времени и осуществлены в основном в ФРГ. Быстрый рост применения подобных процессов доказывается тем, что в период с 1949 по 1954 г. объем газа, очищаемого в ФРГ растворами аммиака, увеличился с 2,4 до 6,28 млн. м кутки [171. Опубликован обзор [18] технологии процесса очистки газа растворами аммиака по состоянию на начало 1957 г. [c.75]

    Абсорбция двуокиси углерода водой имеет промышленное значение для очистки некоторых газов высокого давления, в частности применяемых для синтеза аммиака. Однако этот процесс, по-видимому, в значительной степени вытесняется другими, более эффективными процессами очистки газа, в которых применяются растворители с большей поглотительной емкостью, например моноэтаноламин и карбонат калия. Технологическая схема простого процесса водной абсорбции показана на рис. 6. 1. В простейшем варианте установка состоит только из абсорбера, работающего при повышенном давлении, десорбера, в котором вследствие снижения давления из воды выделяется двуокись углерода, и насоса для подачи воды в верх абсорбера. На схеме показана также рекуперационная турбина, позволяющая использовать часть энергии путем снижения давления жидкости и последующего расширения абсорбированного газа наличие специальной колонны для выделения газов обеспечивает более полную десорбцию СО2 из воды, чем может быть достигнуто в простом десорбере. При такой схеме процесса в десорбере можно поддерживать некоторое среднее давление, получая при этом газ с достаточно высоким содержанием горючих компонентов, используемый в качестве топливного газа с низкой теплотой сгорания. [c.116]


    В последнее время в связи с промышленным освоением крупных газоконденсатных месторождений Оренбурга, и т.д. перед отечественной газовой промышленностью возникла новая и серьезная проблема - очистка природного газа ог тиолов. Газ Оренбургского месторождения характеризуется высоким содержанием тиолов - до 500 кг/нм (в пересчете на серу). Перед подачей в магис1ральньн"1 трубопровод газ подвергается на газоперерабатывающем заводе технологической обработке. Из него промывкой, водным раствором диэтагюламина, практически полностью удаляются сероводород и двуокись углерода остаточная концентрация сероводорода в очищенном природном газе - не более 20 мг/нм . На стадии алканолами-новой очистки 1И0ЛЫ извлекаются лишь частично (на 10-20%) и их остаточное содержание в природном газе составляет 350-400 м]/нл/ Столь высокая концентрация тиолов в значительной степени ухудшает качество природного газа, как сырья для ра личных химических процессов и как энергетического топлива. В связи с этим встал вопрос о необходимости дополнительной очистки природного газа от тиолов. В настоящее время [c.67]

    Обработка газа растворами этаноламинов, поташа, щелочи позволяет одновременно удалить двуокись углерода. Кроме того, для г )убой очистки от СО2 применяется водная промывка. [c.86]

    Технологическая схема процесса по существу не отличается от схемы водной очистки (рис. 1У-86). В нее включена стадия промежуточной десорбции. В случае отсутствия этой стадии двуокись углерода загрязняется компонентами конвертированного газа и теряется часть азотоводородной смеси. Так как количество абсорбента, подаваемого на орошение, практически не меняется при изменении парциального давления двуокиси углерода в газе, то в схеме с промежуточной десорбцией потери я.чотоЕодородной смеси можно свести практически к нулю за счет рециркуляции потока газа, десорбированного в первом десорбере. [c.265]

    Наиболее эффективная очистка кислоты состоит во фрак-цпониропаннон перегонке ее сложного эфира. Эфир нагревают с обратным холодильником в теченпе ночи с 2,3 г едкого кали, 35 мл метилового спирта и 2 мл воды. Спирт отгоняют, остаток подкисляют соляной кислотой и нагревают на паровой бане в течение 1 часа. Смесь экстрагируют эфиром, промывают водой, сушат над сульфатом магния и растворигель испаряют. Неочищенную кислоту перекристаллизовывают из 40 мл 10%-ного водного ацетона. Выход 8,55 г (90,1% в расчете на двуокись углерода), т. пл. 60—6Г. [c.493]

    Абсорбцией водой в промышленных системах очистки удаляют аммиак, сернистый ангидрид, двуокись углерода, водород, фтористые соединения, четырехфтористый кремний, xjtopn Tbin водород и хлор. Водная абсорбция аммиака (и других азотистых оснований) из газов не имеет большого значения как процесс очистки газа (кроме очистки коксового и некоторых других газов, Б которых присутствуют также HgS и Oj). Процессы, разработанные для извлечения аммиака из таких газов водой, тесно связаны с процессами удаления кислых компонентов и рассматриваются совместно в гл. четвертой и десятой. Водная абсорбция сернистого ангидрида является основой процесса, применяемого в промышленном масштабе для очистки дымовых газов тепловых электростанции (процесс Баттерси). Однако в этом случае в качестве абсорбента используют иголочную воду (из реки Темзы), а для поддержания гцелочности добавляют известь. Этот процесс вместе с другими абсорбционными процессами очистки от SO2 описывается в гл. седьмой. [c.111]

    В каменноугольных газах содержатся летучие кислотные компоненты — хлористый водород, сероводород, цианистый водород, двуокись углерода, органические кислоты. Все они соединяются с аммиаком во время охлаждения газа и вследствие растворимости образующихся солей в воде частично удаляются при процессах водной абсорбции. Аммиак в виде солей сильных кислот (главным образом хлористый аммоний) обычно называют связанным аммиаком в легко диссоциирующихся солях слабых кислот, таких как карбонат, бикарбонат, сульфид, гидросульфид и другие, его называют несвязанным . Методы выделения аммиака из различных солей, образующихся при очистке газа, кратко рассмотрены в последней части главы. [c.229]

    Об абсорбции кислых компонентов газов водными растворами аминоспиртов как об одном из методов очистки газа от серы уже упоминалось (стр. 160). Двуокись углерода г огло-щается растворами аминоапиртов значительно медленее. чем сероводород. Особенно медленно протекает поглощение СО2 растворамп третичных аминов для этих целей триэтаноламин в настоящее время не применяется. Кроме того, триэтаноламин [c.322]

    В производстве синтетического аммиака из натурального газа азото-водородная смесь, служащая сырьем для агрегатов синтеза, предварительно очищается от примесей углекислого газа и окиси углерода. Очистка газа от СОг производится водой в скрубберах водной очистки для очистки от СО используется медноаммиачный раствор. Окись и двуокись углерода необходимо удалять из газа почти полностью, так как кислородсодержащие соединения являются силь-нейщими ядами для катализатора синтеза аммиака. Ниже будет приведено описание системы распределения нагрузок между скрубберами водной очистки в настоящем разделе описывается система распределения нагрузок процесса медноаммиачной очистки. [c.198]

    Коррозия, имеющая место в производстве этаноламинов, обусловливается присутствием примесей. В частности, большое влияние на коррозионную стойкость металлов оказывает двуокись углерода. Этаноламины легко поглощают ее, и на этом их свойстве основано широкое использование этаноламинов для очистки промышленных газов от СОг. Дымовые газы, содержащие 10—20% СОг, поступают в абсорбер. Туда же подается 10—30% водный расгвор моноэтаноламина. Далее очищенный газ выбрасывается в атмосферу, а раствор моноэтаноламина, содержащий двуокись углерода, поступает на регенерацию в десорбер, где нагревается до кипения ( 120°С). Аппаратура установок очистки промышленных газов, изготовленная из углеродистой стали, интенсивно корродирует, причем коррозия носит неравномерный и язвенный характер. Сильнее всего корродируют аппараты, работающие при температуре выше 100° С, особенно в местах сварки. Сталь Х18Н10Т в условиях работы кипятильников этих аппаратов также нестойка. Кипятильники из- углеродистой и нержавеющей стали имеюг практически одинаковый срок службы [5—7]. [c.52]

    Вторая группа способов получения газообразной двуокиси углерода применяется при большом содержании углекислого газа в исходной газовой смеси, как, например в естественных источниках или отходах спиртового производства. В этих случаях необходима лишь очистка углекислого газа от небольшого количества примесей. На рис. 10.22 показана технологическая схема получения чистой газообразной двуокиси углерода из продуктов спиртового брожения. Газовая смесь из бродильного чана 1 собирается в газгольдере 2, откуда засасывается компрессором 3, сжимается примерно до 0,3 МПа, и, пройдя водяной поверхностный охладитель 4 и маслоотделитель 5, направляется последовательно через ряд очистительных колонок. В колонке 6 происходит окисление вредных примесей водным растворогл перманганата калия (до 1%), а в колонке 7 окисленные примеси отмываются водой или водным раствором соды Nag Og. Затем в поверхностном охладителе 8 двуокись углерода охлаждается до возможно более низкой температуры для ее осушения. Для охлаждения обычно используют парообразную двуокись углерода, направляемую сюда после третьего дросселирования. Этот пар затем засасывается в первую ступень компрессора. Дополнительную осушку [c.358]

    Для поглощения 1 кг влаги теоретически расходуется 40 72 -0,56 кг едкого натра. Практически, вследствие неполного использования NaOH в осушительных баллонах, на 1 кг влаги расходуется 0,9—1,0 кг технического едкого натра при этом образуется водный раствор едкого натра. Так как едкий натр поглощает и двуокись углерода, не полностью удержанную в скруббере (декарбонизаторе), при этом способе осушки одновременно происходит и частичная очистка воздуха от СОг. [c.403]

    Для многотоннажного производства мочевины в азотной промышленности применяется двуокись углерода, получаемая в качестве отхода при очистке азотоводородной смеси, направляемой на синтез аммиака, или так называемый экспанзерный газ. После водной очистки азотоводородной смеси этот газ содержит обычно до 90% двуокиси углерода. Моноэтаноламиновая очистка позволяет увеличить содержание СО2 в газе до 98—99%, что способствует повышению выхода мочевины. [c.258]

    Для производства мочевины в большинстве случаев используется двуокись углерода, получаемая в качестве отхода при очистке конвертированного газа, потребляемого в синтезе аммиака. Обычно в условиях промышленного производства очистка газа осуществляется водным или моноэтаноламиновым способом. [c.33]

    Водная очистка при одноступенчатой экспанзии не позволяет получить газ с нужным содержанием СО2. Поэтому применение малоконцентрированной двуокиси углерода приводит к ухудшению показателей производства мочевины. По указанной причине двуокись углерода после водной очистки подвергают концентрированию. [c.37]

    Газ стабилизации из рефлюксной емкости 09Д-106 и избыток газа расширения из сепаратора 09Е-502, содержащие сероводород и двуокись углерода, поступают в яиж-нюю часть абсорбера 09Т-103. Очистка газа от сероводорода и двуокиси углерода в абсорбере ведется встречным потоком водного раствора этаноламинов, концентрация которого 25-40 %. [c.133]

    Хотя сероводород значительно лучше растворяется в воде, чем двуокись углерода, водная абсорбция для извлечения сероводорода из газовых, потоков не нашла широкого промышленного применения. Вероятно, это объясняется главным образом тем, что парциальное давление сероводорода в газе обычно недостаточно велико для эффективного осуществления процесса водной абсорбции. Использованию этого процесса препятствуют также жесткие требования к степени очистки газа от сероводорода и невозможность применения воздуха для десорбции раствора (из-за протекания побочных реакций). Как указывалось выше, одним из основных преимуществ процесса водной очистки газа от СОг является значительно меньший расход тепла, чем при процессах очистки этаноламинами или солями щелочных металлов. Расход тепла при этаноламиновой очистке газа от НгЗ меньше, чем при очистке от СО2 вследствие меньшей теплоты реакции. Более того, при достаточно высоком содержании сероводорода в газе, когда увеличение тепловой нагрузки ухудшает экономику процесса, обычно оказывается более целесообразным (а иногда и необходимым) перерабатывать сероводород на элементарную серу. В ходе этого процесса получается достаточное количество отходящего тепла, обеспечивающее нормальную работу этаноламиновой установки. [c.126]


Смотреть страницы где упоминается термин Водная очистка от двуокиси углерода: [c.414]    [c.411]    [c.382]    [c.460]    [c.9]    [c.64]    [c.230]    [c.163]    [c.163]    [c.14]    [c.22]    [c.55]    [c.242]    [c.5]   
Смотреть главы в:

Очистка технологических газов -> Водная очистка от двуокиси углерода

Очистка технических газов -> Водная очистка от двуокиси углерода




ПОИСК





Смотрите так же термины и статьи:

Водная углерода

Двуокись углерода водная



© 2025 chem21.info Реклама на сайте