Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительно-восстановительные реакции в анализе

    Явление химической индукции известно более ста лет. Его изучали и изучают многие исследователи, так как возникновение индуцированных реакций слул<ит источником многих ошибок в анализе. Сущность явления состоит в том, что некоторые окислительно-восстановительные реакции не протекают или протекают медленно. Предположим, что в растворе имеются вещества А и С, скорость реакции между которыми равна нулю. [c.374]


    В последние годы начинает развиваться и химия полупроводников. В частности, это проявляется в разработке новых методов получения и анализа индивидуальных веществ исключительно высокой степени чистоты и правильной кристаллической структуры, что необходимо для получения некоторых полупроводниковых материалов с заданными свойствами. Кроме того, за последние годы отчетливо выявилось, что внутренняя структура, характерная для полупроводников, определяет также и химические свойства некоторых соединений, в частности свойства некоторых катализаторов окислительно-восстановительных реакций. [c.145]

    Структура тестов предусматривает на первом этапе рассмотрение окислительно-восстановительных реакций в различных условиях. Например, высокотемпературное окисление металла не является электрохимическим процессом, но сопровождается переходом электронов, тогда как окисление в растворе электролита ухе будет таковым. Анализ окислительно-восстановительной реакции в растворе позволяет перейти к характеристикам реакций окисления и восстановления. затем к их анализу в виде отдельных процессов. [c.52]

    Общие вопросы о применении окислительно-восстановительных потенциалов для расчетов направления реакции и связи между константой равновесия окислительно-восстановительных реакций и потенциалами рассматриваются в курсе качественного анализа . Ниже рассматриваются главным образом вопросы более специфические для количественного анализа. Сюда относятся прежде всего влияние среды и концентрации компонентов. Для этого можно пользоваться уравнением связи между потенциалами и константой равновесия. Однако применение указанных уравнений довольно сложно. Поэтому ниже при решении отдельных задач используется обычно более простой сг особ приближенного расчета. [c.351]

    Наряду с общими признаками реакций обоих типов име-тотся также и существенные отличия. Так, механизм окислительно-восстановительных реакций значительно сложнее, чем /реакций кислотно-основного взаимодействия. Это проявляется в том, что реакции кислотно-основного взаимодействия протекают очень быстро, в то время как реакции окисления — восстановления во многих случаях замедленны, что часто мешает проведению. анализа. Небольшая скорость ряда окислительно-восстановительных реакций обусловлена в основном тем, что электронные переходы часто сопровождаются частичным изменением или полным разрушением молекулярной структуры участвующих в реакции частиц. Поэтому окислительно-восстановительные реакции между катионами и анионами часто проходят через стадии обмена лигандов, что, например, имеет место при окислении иодид-ионов ионами железа (П1), которое обычно описывается простым уравнением  [c.158]


    Какие требования предъявляются к окислительно-восстановительным реакциям, используемым в объемном анализе  [c.87]

    Константа равновесия. В некоторых случаях надо знать не только направление окислительно-восстановительной реакции, но и насколько полно она протекает. Так, например, в количественном анализе можно опираться только на те реакции, которые практически протекают на 100% (или приближаются к этому). [c.199]

    Классификация хроматографических методов анализа. Разнообразие хроматографических методов, различающихся по физико-химической основе и технике выполнения анализа, не позволяет классифицировать их по какому-либо одному критерию. Наиболее важные показатели, отражающие физико-химическую сущность и особенности техники анализа, следующие агрегатное состояние разделяемых веществ — газ (пар) или жидкость (раствор) природа сорбента — твердое вещество или жидкость характер взаимодействия между сорбентом и разделяемыми веществами — распределение молекул или ионов менаду двумя фазами, образование координационных соединений в фазе или на поверхности сорбента, протекание окислительно-восстановительных реакций при контакте разделяемых веществ с сорбентом техника выполнения анализа — в колонке, капилляре, на бумаге, в тонком слое сорбента. [c.7]

    Органические вещества могут участвовать в протолитических, окислительно-восстановительных реакциях, а также реакциях осаждения и комплексообразования, что обусловлено химическими свойствами их функциональных групп. В связи с этим для количественного титриметрического анализа органических соединений используют в основном те же методы, что и для анализа неорганических соединений. Кроме того, для целей анализа используют реакции конденсации, замещения водорода, введения нитро- или нитрозо-групп, присоединения, свойственные органическим веществам. В некоторых случаях в процессе титрования сочетаются несколько типов взаимодействий, например окисление— восстановление, замещение водорода и присоединение, кислотно-основное взаимодействие и присоединение и т. п. [c.213]

    С помощью окислительно-восстановительных реакций в качественном анализе открывают катионы, анионы, нейтральные вещества. Приведем некоторые примеры. [c.167]

    Окислительно-восстановительные реакции в количественном анализе [c.170]

    Окислительно-восстановительными реакциями в аналитической химии пользуются часто. Один из примеров — перевод элемента в веществе из низшей степени окисления в высшую и обратно. Это делают с целью маскировки ионов, чтобы устранить их вредное влияние на ход анализа. Так,Ре + переводят в Ре +, МпО —в СгзО — [c.106]

    Применение окислительно-восстановительных реакций в титриметрическом анализе [c.388]

    Химический анализ неорганических веществ обычно осуществляют в водных растворах. В подавляющем большинстве случаев при этом используют ионные реакции. Взаимодействие между противоположно заряженными ионами протекает практически мгновенно. Однако реакции между одинаково заряженными ионами, а также между ионами и молекулами во многих случаях оказываются медленными. Так, например, медленно протекают многие окислительно-восстановительные реакции. [c.39]

    Широкое применение в потенциометрическом анализе нашли окислительно-восстановительные реакции. Рассмотрим, например, процесс потенциометрического титрования хлорида трехвалентного железа хлоридом титана РеЗ+ + Т1 +- Ре + + Т1 +. [c.194]

    Электрохимический анализ окислительно-восстановительных реакций. [c.148]

    В разделе о классификации методов химического анализа указывалось, что в основе титриметрических методов могут быть реакции самых различных типов кислотно-основные, окислительно-восстановительные, реакции осаждения или образования комплексных соединений. Тем не менее во всех этих случаях весьма существенно правильно определить так называемую точку эквивалентности, т. е. момент титрования, когда достигнуто эквивалентное отношение реагирующих компонентов —определяемого вещества и реагента. [c.114]

    ЗЛ4 ТИТРИМЕТРИЧЕСКИЙ АНАЛИЗ С ИСПОЛЬЗОВАНИЕМ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ [c.72]

    Изучение энергии Гиббса веществ — достаточно сложный предмет, и в курсе общей химии можно дать лишь введение в эту область науки. В следующей главе будут рассмотрены изменения энергии Гиббса, сопровождающие окислительно-восстановительные реакции подобный анализ можно произвести и для других реакций. [c.301]

    Селективность индикаторных электродов зависит от их химической природы. Электроды из химически стойких материалов (платины, углерода и др.) чувствительны к электродным процессам, протекающим с переносом электронов, т.е. ко всем окислительно-восстановительным реакциям. Электроды с ионной проводимостью проявляют чувствительность к частицам, которые являются ионами, присоединяют ионы или служат их источниками. Принимая во внимание разнообразие индикаторных электродов, используемых в электрохимическом анализе, остановимся на наиболее распространенных из них. [c.82]


    В титриметрическом анализе широко используются не только кислотно-основные взаимодействия, но и другие типы аналитических реакций окислительно-восстановительные, реакции комплексообразования. Например, наше определение кальция в образце № 1 в виде оксалата можно завершить не взвешиванием, а окислительно-восстановительным титрованием оксалата перманганатом калия (перманганатометрия) по реакции [c.454]

    ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ В АНАЛИЗЕ [c.141]

    Пользуясь таблицей стандартных потенциалов, можно предвидеть Направление окислительно-восстановительных реакций, а также иметь возможность выбирать соответствующие окислители и восстановители для проведения любого окислительно-восстановительного процесса. При этом необходимо учитывать влияние концентраций отдельных компонентов соответствующих пар на окислительно-восстановительный потенциал. Если не учитывать это влияние, то можно прийти к ошибочным результатам анализа. [c.147]

    Возникновение индуцированных реакций может служить источником ошибок в анализе. Сущность явления состоиг в том, что некоторые окислительно-восстановительные реакции не прот кают в растворе или протекают очень медленно  [c.138]

    Для того чтобы записать уравнение окислительно-восстановительной реакции, прежде всего надо знать исходные вещества и конечные продукты реакции. В отдельных случаях однозначный ответ можно получить из расчета, основанного на данных об окислительно-восстановительных потенциалах соответствующих редокс-пар (разд. 33.5.1.5). Однако часто приходится устанавливать полученные в реакции. вещества с помощью химического анализа. Особое внимание следует обращать на возможность выделения в ходе реакции газов. Например, при реакции пиролюзита МпОг с соляной кислотой цвет и запах выделяющегося газа указывает на образование хлора, а цвет и другие свойства раствора — на образование Мп +. Зная компоненты системы, можно установить состав сопряженных окислительно-восстановительных пар, взаимодействующих в данной реакции. В нащем примере такими парами являются МПО2/МП2+ и С1 /С12- Сначала запишем по 1уреакции для обеих сопряженных пар. Начнем с определения степени окисления, которую атомы элементов имеют в окисленном и восстановленном состоянии. Далее найдем число электронов, которые участвуют в каждой полуреакции  [c.410]

    Переход электронов в окислительно-восстановительной реакции может происходить как в объеме раствора между находящимися в нем частицами, так и на границе раздела твердая фаза — раствор. Примерами гомогенных реакций могут служить взаимодействия между ЗпСЬ и РеСЬ или между РеЗОч и К2СГ2О7 в водном растворе. Подобные реакции часто используются в химическом анализе для определения окислителей или восстановителей. При потенциометрическом титровании (разд. 39.6) точка эквивалентности совпадает со скачкообразным изменением потенциала. [c.416]

    Определение момента завершения кулонометрического титрования. Почти все способы индикации конечной точки реакции, используемые в титриметрических методах анализа, пригодны й при кулонометрическом титровании. Применяются цветные индикаторы (в основном при кислотно-основных и окислительно-восстановительных реакциях), а также ряд инструментальных методов (потенциометрия, кондуктометрия, амперометрия, спектрофотометрия, радиометрия и т. д.). Из них наиболее часто применяют потенциометрию и амперометрию, особенно биамперометрию. Большая концентрация вспомогательного реагента отрицательно сказывается при использовании кондуктометрического метода индикации конечной точки, так как электропроводность является функцией всех ионов в растворе, и поэтому небольшое ее изменение в процессе кулонометрического титрования трудно обнаружить. [c.203]

    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]

    Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления - восстановления. Получение простых веществ (железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д.) ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов И т. д. было бы невозможно без использования окисли-тельно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа перманганатометрия, ио,дометркя, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.75]

    На процессах окисления-восстановления в аналитической химии основаны методы объемного анализа перманга-натометрия, иодометрия, броматометрин и другие, играющие важную роль при контролировании производственных процессов и выполнении научных исследований. Поэтому окислительно-восстановительным реакциям, как разделу курса Общей химии , необходимо уделить должное внимание. В [c.3]

    Некоторые из методов количественного гравиметрического (вёсово-го) анализа основаны на испольговании окислительно-восстановительных реакций. [c.170]

    Один из разделов количественного титриметрического (объемного) анализа целиком основан на применении окислительно-восстановительных реакций. Это — окислительно-восстановительное титрование (окси-диметрия, редокс-метрия). К наиболее распространенным методам ре-докс-метрии относятся перманганатометрия, иодиметрия и иодометрии, хлориодометрия, иодатометрия, броматометрия, бромометрия, нитрито-метрия, дихроматометрия, цериметрия. Нее они являются фармакопейными и используются в анализе различных лекарственных веществ. [c.171]

    Метод измерения электропроводности нашел применение в объемном анализе под названием кондуктометрического титрования. Он с успехом применяется в случаях, когда между анализируемым и титрующим растворами могут протекать обменные ионные или окислительно-восстановительные реакции, в результате которых изменяется проводящая способность раствора. Обычно это является следствием образования мало диссоциированных соединений (реакции нейтралиг [c.21]

    Окислительно-восстановительные реакции и гальванические элементы. Стандартные электродные и окислительно-восстановительные потенциалы. Нормальный водородный электрод. Уравнение Нерн-ста. Электрохимический анализ окислительно-вос-гтановительных реакций. [c.140]

    Химические вёщестйа вводят в окислительно-восстановительные реакции в той ф фме, в которой они сущест- вуют в обращении. Для- составления уравнений реакций это не создает помех. Однако для анализа окислительно-восстановительных равновесий форшы существования В йЁ(ест й -должны соотйетствовать составу раствора. [c.255]

    Фазовым анализом установлено, что основными формами нахождения меди в отложениях являются металлическая медь, тенорит (СиО) и феррит меди ( uFeOa). При удалении медьсодержащих отложений основная трудность заключается в протекании окислительно-восстановительной реакции [c.56]

    Окислительно-восстановительные реакции часто протекают путем туннельного переноса электрона. Представление о туннельном механизме переноса частицы было впервые сформулировано Г.Гамовьш (1928 г.). Модель окислительно-восстановительной реакции между иона.ми как результат туннелирования электрона была сформулирована Б.Зволинским, P.A.Маркусом и Г.Эйрингом в 1955 г. на основе теории абсолютных скоростей. Представления Гамова о туннелировании были использованы Дж.Вейсом при анализе процесса переноса электрона от иона к иону (1954 г.). Р.А.Маркус (1956 г.) рассмотрел реакцию обмена электроном для случая, когда перекрывание электронных орбиталей двух реагентов в активированном комплексе очень мало. Современная квантовая химия реакций переноса электрона развита в работах Р.Р.Догонадзе, А.М.Кузнецова отдельные вопросы этой проблемы рассмотрены в работах А.А.Овчинникова, В.А.Бен-дерского, В.Л.Гольданского, К.И.Замараева, Р.А.Маркуса, Э.Д.Германа, В.М.Бердникова, Л.Д.Зусман. [c.307]

    В процессе отбора (особенно измельчения) и хранения пробы в массе образца (прежде всего на поверхности) могут проходить химические реакции, меняющие состав анализируемого объекта. Обычно это взаимодействие с компонентами атмосферы, окислительно-восстановительные реакции и др. Так, известно, что концентрация пестицидов в растени51х, почве и т. п. со временем значительно понижается, что обусловлено прежде всего химическими превращениями пестицидов. При анализе геологических образцов в процессе пробоотбора наблюдаются заметные потери определяемых компонентов вследствие окисления [сера, рений, железо (II)] или восстановления (ртуть). Потери ртути в пробе, если не принять особых мер предосторожности, могут достигать 60%. [c.66]

    Большое применение находят масс-спектрометры с химической ионизацией, основанные на использовании ионов-реагентов и регистрации масс-спектра, происхождение которого обусловлено протеканием химических процессов с переносом протона или электрона, т.е. кислотно-основных или окислительно-восстановительных реакций. Эти реагенты, обладающие различными кислотностью или окислительным потенциалом, определяют интенсивность и ггаправле-ние реакций химической ионизации, что способствует широкому использованию этого метода в качественном и количественном анализе и для исследования реакциогшой способности органических соединений. [c.141]

    Осуществление нуклеофильного сульфитирования лигнина по данной схеме связано с сопряженными окислительно-восстановительными реакциями в системе сульфирующий агент - лигнинный субстрат и изменением их редокс-состояния. Окислительно-восстановительный уровень реакционной среды определяется концентрацией и характером присутствующих в ней компонентов. Однако сравнение спектральных и оксредметрических характеристик лигнинных компонентов и сульфирующих агентов (см. гл. 2 и 4) позволяет полагать, что функция отклика используемых физико-химических методов анализа определяется преимущественно редокс-состоянием лигнинных структур. [c.254]

    В литературе описано несколько вариантов каталитического метода определения рения (см. стр. 142). Однако на практике при анализе различных материалов используется только один, основанный на каталитическом действии рения на окислительно-восстановительную реакцию между теллурат-ионом и Sn(II) [26, 1190]. Высокая чувствительность каталитического метода позволяет использовать его для определения реиия (сотые и тысячные доли микрограмма) в породах (гранитах, оливиновом базальте, траппе, диабазе). Метод недостаточно избирателен, перед определением рения необходимо проводить тщательное отделение его от примесей. При анализе различных материалов используются разные способы разложения и отделения рения от примесей. Показано, что разложение материала азотной кислотой вызывает занижение результатов определения рения на 50%. Присутствие следов нитрат-ионов почти полностью подавляет каталитическую реакцию Te(Vl) с Sn(H) [28]. Поэтому материалы рекомендуется разлагать сплавлением с NaOH и NaaO и другими щелочными смесями. Ниже приведена методика анализа породы [1190]. [c.242]

    В книге значительное внимание уделено общетеоретическим вопросам, т. е. основным понятиям и законам химии, строению атомов, типам химических связей, растворам, смещению химического равновесия, теории электролитической диесоциации, гид-роли , окислительно-восстановительным реакциям, произйедшию растворимости, водородному показателю. Кроме этого, дано представление об историческом пути р1азвития химического анализа и становлении аналитической химии и ее современных задачах. [c.3]

    Окислительно-восстановительные реакции широко использук в анализе неорганических веществ. В качественном анализе с i помощью отделяют ионы друг от друга и обнаруживай присутствие ионов в растворе. В количественном анализе i них основаны оксидиметрические методы титриметрии. [c.148]


Смотреть страницы где упоминается термин Окислительно-восстановительные реакции в анализе: [c.530]    [c.10]    [c.195]    [c.72]    [c.249]   
Смотреть главы в:

Аналитическая химия -> Окислительно-восстановительные реакции в анализе

Аналитическая химия -> Окислительно-восстановительные реакции в анализе




ПОИСК





Смотрите так же термины и статьи:

Анализ реакций

Окислительно-восстановительные реакци

Окислительно-восстановительные реакции



© 2025 chem21.info Реклама на сайте