Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коксовый газ конверсия

    Остаточный газ имеет еще довольно значительную теплоту сгорания и может быть использован для получения водяного пара. Особенно хорошо этот газ использовать для обогрева коксовых печей, если они находятся поблизости от синтез-установки. С уменьшением активности катализатора температуру в реакторах постепенно увеличивают, чтобы сохранить глубину конверсии на постоянном уровне. Следствием повышения температуры является увеличение относительного выхода газообразных и легкокипящих продуктов синтеза. [c.93]


    В промышленности водород получают главным образом из природных и попутных газов, продуктов газификации топлива (водяного и паровоздушного газов) и коксового газа. В основе производства водо- юда лежат каталитические реакции взаимодействия с водяным паром конверсии) соответственно углеводородов (главным образом метана) л оксида (П) углерода, например  [c.274]

    На конверсию поступает очищенный от сернистых соединений коксовый газ следующего состава (в % об.) СО2 —2-,5 О2 — [c.16]

    По указанным причинам на заводах, использующих для производства метанола коксовый газ, обычно осуществляется кислородная каталитическая конверсия. Насыщение коксового газа паром производится в сатурационной башне до соотношения пар  [c.16]

    Азот для синтеза аммиака получают при разделении воздуха методом глубокого охлаждения. Водород получают различными методами конверсией метана, содержащегося в природном газе, попутных нефтяных газах, газах нефтепереработки и остаточных газах производства ацетилена методом термоокислительного пиролиза конверсией окиси углерода глубоким охлаждением коксового газа электролитическим разложением воды газификацией твердого и жидкого топлива. [c.33]

    Применение катализаторов, включающих оксиды металлов переменной валентности, для окислительной конверсии нефтяных остатков является весьма перспективной областью. Использование данных катализаторов характеризуется рядом особенностей и закономерностей, касающихся химизма и механизма превращений углеводородов сырья, физико-химических свойств получаемых продуктов, характера и количества коксовых отложений. Б связи с этим исследование превращений ТНС на катализаторах оксидного типа в процессе ОКК представляет чисто научный интерес, а также может иметь большое практическое значение для нефтепереработки и нефтехимии. [c.5]

    ОСОБЕННОСТИ ОБРАЗОВАНИЯ И РЕГЕНЕРАЦИИ КОКСОВЫХ ОТЛОЖЕНИЙ ПРИ ОКИСЛИТЕЛЬНОЙ КАТАЛИТИЧЕСКОЙ КОНВЕРСИИ ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ [c.59]

    Железоокисные катализаторы характеризуются изменением фазового состава в ходе окислительно-восстановительных реакций, что обусловливает некоторые особенности протекания реакций как в основном процессе, так и в ходе регенерации [3.17]. Ранее предполагалось, что на природном железоокисном катализаторе реакции протекают по радикально-цепному механизму [3.4]. Учитывая рассмотренный в первой главе механизм превращений на катализаторах, содержащих оксиды металлов переменной валентности, можно предположить, что наряду с термической частью реакций, протекающих по радикально-цепному механизму, при окислительной каталитической конверсии значительная часть продуктов, в том числе и коксовых отложений, образуется по механизму карбоксилатного комплекса, в отличие от карбоний-ионного механизма реакций в условиях каталитического крекинга на традиционных катализаторах. [c.63]


    Особенности образования и регенерации коксовых отложений при окислительной каталитической конверсии тяжелого нефтяного сырья [c.81]

    Влияние природы катализатора на состав коксовых отложений при окислительной конверсии мазута [c.92]

    При проведении окислительной конверсии с циркулирующим пылевидным катализатором за счет большего отношения катализатор/сырье и большей суммарной поверхности катализатора интенсивность процесса значительно новы-шается. для пылевидного железоокисного катализатора (табл. 3.5) наблюдается более низкое содержание коксовых отложений и высокое соотношение 5/С по сравнению с гранулированным. С увеличением времени циркуляции пылевидного катализатора (рис. 3.9) и уменьшением температуры процесса снижается содержание углерода в составе коксовых отложений и растет отношение 5/С как для закоксованного, так и для регенерированного катализатора, что, в свою очередь, подтверждает селективный характер окисления элементов коксовых отложений на катализаторах оксид- [c.93]

    Таким образом, на основе литературных и собственных экспериментальных данных, полученных в лабораторных и промышленных условиях, установлены особенности образования и окисления коксовых отложений при окислительной каталитической конверсии тяжелого нефтяного сырья. Установлено, что в процессе коксообразования на катализаторах оксидного типа при окислительной конверсии тяжелого нефтяного сырья протекают реакции окисления, дегидрирования, деалкилирования, деструкции, полимеризации и ноли-конденсации асфальто-смолистых веществ, причем окислительное консекутивное превращение коксовых отложений приводит к более глубокой химической конверсии, чем термическое превращение. [c.95]

    Конверсия остаточного масла. Как уже говорилось выше, гидрообработка остатков с целью обессеривания, деметаллизации и снижения содержания коксового остатка по Конрадсону обеспечивает ряд преимуществ для дальнейшей переработки. [c.104]

    Гидрогенизирующий газ должен содержать достаточно большое количество (около 95%) водорода возможна, но не обязательна подача пара, поскольку осаждение углерода на коксовой мелочи исключает необходимость борьбы с его образованием. Наличие сернистых соединений как в гидрогенизирующем газе, так и в сырье не оказывает влияния на технологию, поскольку в данном сырье процесс конверсии углеводородов является полностью некаталитическим. Однако уходящие газы должны быть очищены, и стоимость отмывки сероводорода иногда является лимитирующим фактором и зависит от количества удаляемой серы. [c.122]

    К наиболее распространенным методам получения водорода и его смеси с азотом и окисью углерода для синтеза аммиака, метанола, высших спиртов и целого ряда других продуктов относится конверсия метана и его гомологов. Исходным сырьем для этого процесса служат природный газ, попутные газы нефтедобычи, газы нефтехимической переработки, остаточные газы производства ацетилена, коксовый газ и др. Сущность этого процесса состоит в окислении метана и его гомологов до водорода и окиси углерода с помощью водяного пара, двуокиси углерода и кислорода. При окислении метана на никелевом катализаторе возможны следующие основные реакции  [c.183]

    Одним из основных методов получения водорода является каталитическая конверсия углеводородного сырья водяным паром. Кроме природных и попутных нефтяных газов в качестве исходного сырья используются коксовый газ, газы переработки нефти, а также жидкие углеводородные фракции (нафта, мазут). [c.114]

    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    Взрывобезопасность разделения горючих газов методом глубокого охлаждения. Эти процессы широко применяются при переработке коксового газа, продуктов высокотемпературного пиролиза и конверсии насыщенных углеводородов. За последние годы получил значительное распространение высокоэффективный метод промывки жидким азотом технического водорода, используемого для производства аммиака. При этом удаляются остатки окиси углерода — каталитического яда этого процесса. [c.84]


    Сырьем в производстве аммиака является азотоводородная смесь (АВС) стехиометрического состава N2 Н2 = 1 3. Так как ресурсы атмосферного азота практически неисчерпаемы, сырьевая база аммиачного производства определяется вторым компонентом смеси — водородом, который может быть получен разделением обратного коксового газа, газификацией твердого топлива, конверсией природного газа (рис. 14.5). [c.192]

    Помимо доменного газа, являющегося низкокалорийным топливом, в доменную печь могут вдуваться углеводороды (жидкие и газовые виды топлива), главная задача которых — замещение коксовой колоши. Углеводороды обычно вдувают через фурмы, используемые для вдувания воздуха. При вдувании всех видов топлива наблюдается снижение рабочей температуры в фурменной зоне. Помимо этого жидкие виды топлива склонны к крекингу и образованию сажистого углерода, который попадает в поднимающиеся газы, поэтому интенсивность вдувания дополнительных топлив и степень замещения кокса углеводородами ограничены. Другим, лишенным отмеченных недостатков способом вдувания углеводородов является подача их в верхнюю зону шахты. Однако для этого требуется предварительная конверсия углеводородов в окись углерода и водород. Вдувание горячих газов-восстановителей способствует прямому восстановлению части железной руды в шихте, снижению расходов кокса и воздушного дутья на выплавку чугуна. [c.305]

    Для металлургической промышленности могут представить интерес различные варианты изготовления восстановительных газов как для бескоксового приготовления металлов в восстановительной атмосфере, так и для сокращения расхода кокса в доменном производстве. Введение в восстановительную зону доменной печи смесей оксида углерода и водорода или чистого водорода позволяет уменьшать расход кокса на величину, в 5—6 раз превышающую израсходованную массу восстановительного газа. Последний может быть получен либо при паровой или парокислородной конверсии коксового газа, либо при термическом разложении углеводородных компонентов коксового газа. Украинским углехимическим институтом было предложено совместить термическое разложение их с сухим тушением кокса из-за эндотермического характера распада метана СН = С + 2Н2 — О. В этом случае камера сухого тушения кокса разделяется на несколько зон. В первой иэ них при подаче небольшого количества воздуха частично сгорает вещество кокса, а основная масса кокса нагревается до 1200< С и более. Затем при взаимодействии с веществом кокса происходит термическое разложение метана и образование газа, насыщенного водородом. Кокс окончательно охлаждается инертным газом. [c.299]

    При получении водорода из природного газа имеются три стадии конверсия СН4 и СО, очистка моноэтаноламином, промывка и дозировка жидким азотом при конверсии коксовых газов — шесть стадий. Кроме того, для кокса нужны склады, развитой транспорт, громоздкие газогенераторные установки и т. п. Поэтому выгодна кооперация завода азотных удобрений, использующего коксовый газ, с металлургическим заводом. Также выгодна комбинация илн кооперирование химических предприятий с нефтехимическими заводами и комбинатами, так как при этом упрощается производственная структура, снижаются капиталовложения и эксплуатационные расходы. [c.18]

    В качестве источника сырья для производства продуктов нефтехимической промышленности стали использовать метан из природного газа. Конверсией метана с водяным паром или реакцией с кислородом получали газ синтеза (смесь окиси углерода и водорода) и водород. Таким образом, метан из природного газа стал одним из исходных продуктов для получения синтетического метилового спирта и синтетического аммиака. Синтез аммиака был разработан в Германии непосредственно перед первой мировой войной, за ним последовало развитие процесса производства синтетического метанола в обоих случаях исходным сырьем служил каменный уголь. Подобно этому и паро-метановый и метано-кислородный процессы получения газа синтеза имеют европейское происхождение, при этом в качестве сырья используется метан, являющийся побочным продуктом в процессах разделения коксового газа или при гидрогенизации угля. [c.21]

    Процесс ART является комбинацией процесса селективного испарения сырья с процессом его декарбонизации и деметаллизации в псев-доожиженном слое. Сырье испаряется в лифт-реакторе с минимальной термической конверсией, позволяющей сохранить водород в жидких продуктах. Термически нестабильная смолисто-асфальтовая часть сырья адсорбируется на сорбенте-катализаторе с частичной термической деструкцией. Сорбент после отпарки в контакторе выжигается от коксовых отложений и возвращается в контактор. [c.128]

    В процессе коксообразования на катализаторах оксидного типа при окислительной конверсии тяжелого нефтяного сырья протекают реакции окисления, дегидрирования, деалкилирования, деструкции, полимеризации и поликонденсации асфальто-смолистых веществ, причем окислительное консекутивное прев >ащение отложений приводит к более глубокой химической конверсии, чем термическое превращение [9]. Установлено селективное влияние железоокисных катализаторов на процесс выгорания основных элементов коксовых отложений (рис. 5). [c.205]

    При сжигании высоковлажных топлив, таких, как торф, бурые угли, древесина, набор реакций на поверхности коксовой частицы может соответствовать приведенному в 7-3. Не все эти реакции идут с одинаковой скоростью. Расчеты скорости реакции конверсии окиси углерода водяным паром (4" ) показали, что при температурах около 1200° С константа скорости реакции 4" примерно в 20 раз ниже константы скорости реакции догорания СО и на семь-восемь порядков меньще, чем реакции На + Од. (Константы скоростей реакций Н + Оа и СО + Оа были приняты по данным 6-3, а реакции СО 4- НаО по работе Н. В. Кульковой и М. И. Темкина.) [c.157]

    Широкое и эффективное применение высоких и сверхвысоких давлений (синтезы аммиака, метанола, мочевины и других веществ, конверсия окиси углерода, процессы гидрогенизации, разделение коксового газа, получение концентрированной азотной кислоты, электролиз воды и т. д.) обусловлено не только тем, что многие промышленно важные реакции протекают с уменьшением объема. Режим повышенного давления ускоряет процессы, позволяет уменьшить размеры аппаратуры, улучшить теплопередачу и т. д. — словом, интенсифицировать процесс. [c.134]

    Для извлечения ценных компонентов и придания более удобного для использования вида твердое топливо подвергают химической обработке. Используются в основном три способа обработки твердого топлива пиролиз (сухая перегонка), частичное окисление (конверсия) и гидрогенизация. Пиролиз заключается в нагреве топлива при 500—600 °С или 900—1100 °С без доступа воздуха. При этом происходит разрыв некоторых химических связей и соответственно распад макромолекул, в результате чего образуются газообразные и жидкие продукты и твердый остаток (кокс или полукокс), состоящий в основном из углерода и золы. Из газообразных продуктов выделяют ценные для химической промышленности компоненты, например сероводород и аммиак. Оставшийся газ, называемый коксовым, состоящий в основном из метана и водорода, используют как восстановитель и топливо. Жидкие продукты (смолы) применяются в химической промышленности. Кокс и полукокс служат восстановителями в металлургии. [c.382]

    Конверсия метана коксового газа. Получение СО-водородной смеси на базе коксового газа может осуществляться высокотемпературной либо каталитической конверсией содержащегося в нем метана. Коксовый газ, очищенный от нафталина, поступает на очистку от сероводорода (моноэтаноламиновая или мышьяковосодовая), затем освобождается от тяжелых углеводородов в угольных фильтрах и направляется в конверторы, заполненные железохромовым катализатором, где при температуре 400° С сероорганические соединения конвертируются до сероводорода. Последний удаляется из газа на специальных установках. [c.16]

    Сопоставление показателей каталитической и высокотемпературной конверсии метана коксового газа показало, что процесс высокотемпературной конверспи не требует предварительной очистки коксового газа от сероорганических соединений. При этом отпадает необходимость строительства отделения каталитического разложения органической серы. Однако высокотемпературная конверсия требует повыИхенного расхода исходного коксового газа и кислорода, а также увеличения каптнталовложений по стадии разделения воздуха. В результате расчетов было установлено, что величина текущих затрат по схеме с высокотемпературной конверсией примерно на 5% выше, чем по схеме с каталитической конверсией. [c.16]

    Анализ литературных и собственных экспериментальных данных, приведенный в предыдущих главах, показывает, что в основе превращений, протекающих с тяжелым нефтяным сырьем на катализаторах, содержащих оксиды металлов переменной валентности, к которым относится и железоокисный катализатор, лежит термоокислитсльная конверсия углеводородов сырья по механизму карбоксилатного комплекса. Образование и окисление коксовых отложений, как и других продуктов окислительной каталитической кон-ис]5сии, 11]5( исходит в соответствии с закономерностями, обусловленными особенностями механизма действия катализаторов, содержа1цих оксиды металлов переменной валентности, и особенностями состава и свойств тяжелого нефтяного сырья. Некоторые закономерности накопления и окисления коксовых отложений рассмотрены ранее [3.56-3.59], более подробно этот вопрос рассматривается в следующем разделе. [c.81]

    Одной из основных особенностей образова1П1Я и окисления коксовых отложений при конверсии тяжелого нефтяного сырья па катализаторах оксидного типа и в процессе регенерации является то, что в ходе окислительной каталитической конверсии, наряду с процессом образования коксовых отложений, происходит их окисление кислородом катализа-то]5а и водяного пара, что отражается на составе коксовых от. юженип, закономерностях их наконления и выгорания. [c.81]

    В производствах синтетического аммиака используются различные способы получения азотоводородной смеси 1) двухступенчатая каталитическая конверсия метана водяным паром [(2—3)-10 Па] 2) высокотемпературная конверсия природного газа (без катализатора при температуре 1400—1450°С и давлении 3-10 Па) 3) кислородная конверсия газа либо под атмосферным давлением, либо под повышенным давлением 4) разделение коксового газа. [c.201]

    Разделение коксового газа. Метод фракционированной конденсации с применением глубокого охлаждения используют для разделения коксового газа, а также для очистки конвертированного газа от оксида углерода после парокислородной конверсии метана. Разделение коксового газа конденсацией его компонентов служит одним из методов получения водорода или азотоводородной смеси. Попутно выделяют этиленовую и метановую фракции, а также фракцию оксида углерода. Эти побочные продукты служат сырьем для органического синтеза. [c.77]

    Фишеровские установки в Германии исиользовали дли этого процесса обычные генераторь водяного газа, применяющие в качестве сырья кокс. Для достижения в отношении СО и Нз требуемой пропорции (2 1) используют реакцию каталитической конверсии части СО в СО3 п Нд или же добавляют к водяному газу газ коксовых печей. [c.194]

    Автотермическая каталитическая конверсия углеводородов. Этим способом перерабатываются природный, коксовый и некоторые другие газы. Процесс осуществляется в шахтном реакторе с неподвшшым слоем никелевого катализатора, куда подается предварительно перемешенная смесь газа, пара и кислорода. Разработанные в 50-х годах процессы проводятся под давлением до 60 ат при температуре на выходе из реактора 800-860°С. В зависимости ог назначения получают газовую смесь, состоящую из СО, СО2. и /1 в различных соотношениях. [c.9]


Смотреть страницы где упоминается термин Коксовый газ конверсия: [c.155]    [c.96]    [c.72]    [c.231]    [c.19]   
Справочник азотчика Том 1 (1967) -- [ c.102 , c.106 ]

Технология связанного азота Синтетический аммиак (1961) -- [ c.105 , c.110 ]

Справочник азотчика Т 1 (1967) -- [ c.102 , c.106 ]




ПОИСК







© 2024 chem21.info Реклама на сайте