Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика реакций, протекающих без катализатора

    В литературе появилось огромное количество публикаций об алкилирующих каталитических системах на основе цеолитов. Разноречивы мнения в оценке активных центров и механизма реакции алкилирования бензола пропиленом на цеолитсодержащих катализаторах, а также недостаточное изучение кинетики реакции в определенной мере сдерживают реализацию процесса в промышленности. Кроме того, при алкилировании бензола пропиленом на цеолитах и цеолитсодержащих катализаторах протекают побочные реакции образование полиалкилбензолов, крекинг изопропилбензола с образованием этилбензола и толуола, изомеризация изопропилбензола в н-пропилбензол и полимеризация пропилена. Наличие этих примесей ухудшает количество товарного изопропилбензола, ингибирует процесс его окисления. Переалкилирование полиалкилбензолов протекает при более высоких температурах и давлениях, чем алкилирование. Перспективными представляются цеолитсодержащие катализаторы с редкоземельными элементами СаНУ, на которых переалкилирование протекает в условиях реакции алкилирования. Побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывает их дез- [c.252]


    Уравнения кинетики гетерогенных химических реакций, протекающих в потоке, были выведены Г. М. Панченковым. Если гетерогенная химическая реакция протекает в -потоке, т. е. если реагирующие вещества движутся в трубке через неподвижно закрепленный твердый катализатор, то, согласно данному выше определению (стр. 316), скорость гетерогенной химической реакции [c.324]

    Кинетика гидрирования ацетона изучена в проточных условиях под давлением с использованием катализатора NaM [200]. Бьшо показано, что скорость реакции прямо пропорциональна парциальному давлению водорода (рис. 1.37, а), т.е. порядок реакции по водороду равен единице. В то же время скорость гидрирования не зависит от парциального давления ацетона, если парциальное давление водорода постоянно (рнс. 1.37,6). Кажущаяся энергия активации реакции гидрирования составила 42 кДж/моль. Для объяснения наблюдаемых кинетических закономерностей было предположено, что, как н в случае гидрирования ароматических н олефиновых углеводородов, реакция протекает путем последовательного присоединения атомов или нонов водорода по ненасьпценным связям гидрируемого соединения. [c.78]

    Поп и Вильямс [40] изучали кинетику поликонденеации диэтиленгликоля с адипиновой кислотой в расплаве в присутствии -толуолсульфокислоты как катализатора. Они нашли, что после начального периода, характеризующегося более сложной кинетикой, реакция протекает по второму порядку. В начальный период пол и конденсация при 140° С протекает с ббльшей, а при более низкой температуре — с меньшей скоростью, чем на последующей стадии. Авторы полагают, что изменение скорости реакции связано с изменением свойств реакционной среды, а нес изменением реакционной способности функциональных групп. [c.138]

    В диапазоне температур 600—672 К исследована 102] кинетика конкурентных реакций гидрирования бензола и толуола и дегидрирования соответствующих нафтенов на платиновой проволоке. Реакции протекают строго селективно. Полученные результаты по всем диапазонам температур, давлений и активностей описываются одним кинетическим уравнением. Постоянство отношения скоростей конкурентных реакций в процессе дезактивации катализатора позволило сделать вывод, что на лимитирующих стадиях обе реакции протекают на одних и тех же активных центрах. [c.56]


    Процесс протекает под влиянием оснований, из которых для синтеза эластомеров наиболее удобным оказался комплексный катализатор, состоящий из третичного амина и окиси олефина, поскольку он позволяет осуществлять регулирование скорости процесса в достаточно широком интервале. Исследование кинетики реакции [79] показало, что процесс представляет собой своеобразный вариант анионной полимеризации, скорость которой описывается уравнением первого порядка. [c.446]

    Уже в 1931 г. было предположено [15], что медленной стадией при разложении аммиака может быть десорбция атомов азота. В последующем десятилетии очень детальное изучение синтеза и разложения аммиака в условиях, применяемых в промышленности, и в особенности работы, проведенные под руководством Темкина, Брунауэра и Эммета, Франкенбурга и X. С. Тэйлора, показали, что скорость адсорбции азота определяет скорость синтеза, а скорость его десорбции — скорость разложения аммиака. Недавно опубликованы превосходные обзоры [16, 17] этих исследований, в которых обращено большое внимание на разнообразие методов, использованных для получения данных по кинетике названных реакций. Для доказательства того, что поверхностные реакции протекают быстро, были использованы меченые атомы [18. Измерение поверхности катализаторов [19] сделало возможным более прямое сопоставление скоростей реакций на различных катализаторах. Было проведено также тщательное сравнение [20—22] скоростей адсорбции со скоростями реакций. При изучении хемосорбции частиц каждого типа на основе полученных результатов были проверены различные изотермы. Массивные катализаторы и их поверхности исследовали рентгенографически, пытаясь связать [16] каталитическую активность с кристаллической структурой . Рентгенографию и измерение величины удельной поверх- [c.244]

    И В объеме равны, но реакция протекает только на внешней поверхности катализатора. Кинетика процесса при этом определяется кинетикой химической реакции. [c.316]

    Методика исследования кинетики реакций в жидкостях в значительной степени зависит от числа фаз, присутствующих в реакционной системе. Если система однофазная и реакция протекает не слишком быстро (в достаточно разбавленном растворе), то изучение кинетики сводится к отбору проб во времени из реактора любой конструкции. При этом необходимо обеспечить лишь хорошее термостатирование, замер температуры и анализ проб с достаточной представительностью. В данном случае не требуется какая-либо специальная методика. Если реакции протекают в гомогенной фазе между двумя или несколькими реагентами быстро (порядка минут или секунд), если реакции сопровождаются изменением объема или если они осуществляются в двух- или трехфазных системах, в том числе включая гетерогенный катализатор, то возникает необходимость применения специальных экспериментальных методов. [c.63]

    Если катализатор — жидкость, а реагенты находятся в газовой или в жидкой фазе, несмешивающейся с фазой катализатора, то, как и в случае реакций на твердом катализаторе, кинетика процесса может определяться кинетикой реакции или массопередачей. Обычно реакция протекает в фазе катализатора и катализатор нерастворим в газовой или жидкой фазе, в которой находятся реагенты, а реагенты и продукты реакции мало растворимы в катализаторе. Предельными случаями в зависимости от соотношения скоростей реакции и массопередачи являются следующие. [c.156]

    Из рис. 2—4 видно, что в случае применения катализатора КУ-2 лучшая линейность кинетических зависимостей наблюдается для уравнения второго порядка. Незначительное отклонение этих зависимостей от линейности при этерификации низкомолекулярных кислот объясняется, по-видимому, следующими явлениями эте-рификация ТЭГ низкомолекулярными кислотами катализируется лучше, чем высокомолекулярными. Низкомолекулярные кислоты свободно проникают в поры катализатора, и реакция протекает быстро. Из-за накопления внутри пор крупных молекул продуктов реакции диффузия кислот затрудняется по мере протекания реакции, т. е. диффузия частично контролирует кинетику, и часть активных групп внутри пор не проявляет своего действия. Таким бразом, состав катализатора при этерификации этими кислотами как бы меняется к концу реакции, чем и объясняется отклонение от линейности. [c.108]

    Рассмотрим кинетику гомогенно-каталитической бимолекулярной односторонней реакции. Предположим, что реакция протекает одно-стадийно с образованием активного комплекса, в котором участвует катализатор  [c.416]


    Кинетика реакций гетерогенного катализа оказывается сложной вследствие того, что реакция протекает полностью или в основном на поверхности катализатора, поэтому необходимо установить зависимость поверхностных концентраций в (степеней заполнения поверхности) от объемных С . [c.74]

    Рассмотрим прежде всего кинетику гетерогенных каталитических процессов. В этом случае реакция протекает на границе раздела фаз, например, на поверхности твердого катализатора. Следовательно, скорость таких реакций зависит от величины поверхности. Поэтому, как правило, в качестве катализаторов применяют вещества с большой удельной поверхностью, с развитыми порами и достаточно измельченные. [c.334]

    Внешняя кинетическая область. В этом случае концентрации реагирующих веществ на поверхности катализатора и в объеме равны, но реакция протекает только на внешней поверхности катализатора, не захватывая внутренней поверхности. Кинетика процесса при этом определяется кинетикой химической реакции. [c.15]

    В рамках данного проекта проводятся исследования перспективного метода синтеза циклогексаноноксима - исходного продукта в производстве е-капролактама окислительным аммонолизом циклогексанона. Реакция окислительного амманолиза осуществляется при взаимодействии циклогексанона с аммиаком и перекисью водорода при 10-20°С. В качестве катализатора нами использовались растворимые в водной фазе соединения вольфрама. Стабилизация распада перекиси водорода осуществлялась с помощью трилона-Б Было установлено, что при молярном соотношении циклогексанон перекись водорода аммиак = 14 5 выход циклогексаноноксима составляет 93-95% на загруженный циклогексанон при практически полной его конверсии. С целью выяснения механизма реакции окислительного аммонолиза циклогексанона была изучена кинетика процесса и показано, что он протекает через промежуточное образование гидропероксициклогексиламина Для получения циклогексанона и перекиси водорода предложено использовать жидкофазное окисление цикJюгeк aнoлa В зтой связи подробно изучена реакция окисления циклогексанола - температура, продолжительность реакции, концентрация катализатора, выделение смеси циклогексанона и перекиси водорода, которая непосредственно была использована для получения циклогексаноноксима. Изучена кинетика реакции окислительного аммонолиза циклогексанона и предложен механизм реакции [c.53]

    Проточно-циркуляционная установка позволяет осуществлять измерение непосредственно скорости химического превращения. Однако она не может выявить полной картины кинетики, если вне катализатора протекают побочные реакции. [c.318]

    Скорость химической реакции зависит от концентрации реагирующих веществ и наличия или отсутствия катализаторов — ускорителей реакции. В связи с этим реакции подразделяются на каталитические и некаталитические. Наконец, реакции могут идти как только с участием валентно-насыщенных молекул или ионов — так называемые неценные реакции, — так и с участием свободных радикалов или атомов. В последнем случае реакции идут по цепному механизму и относятся к классу цепных реакций. В зависимости от условий протекания реакции механизм кинетических процессов меняется. Поэтому для различных условий течения реакции характерны специфически отличные кинетические законы. Это приводит к необходимости разделения кинетики на разделы кинетика некаталитических и каталитических реакций. Каждая из этих глав может быть в свою очередь разделена на кинетику нецепных реакций и кинетику цепных-реакций. Нецепные и цепные реакции могут быть как гомогенными, так и гетерогенными. Кинетика гомогенных реакций объединяет кинетику газовых реакций и кинетику реакций в растворах. Специфика гетерогенных реакций зависит как от фазового состояния системы, так и от того, в какой области (кинетической, диффузионной или переходной) протекает реакция. [c.6]

    Скорость химических реакций — зависит от природы реагирующих веществ, от их концентраций и от условий, в которых реакция протекает (температура, давление, присутствие катализатора). С. х.р. может колебаться в очень широких пределах от почти мгновенно протекающих цепных реакций до многолетних процессов окисления органических веществ. См. Кинетика. [c.122]

    Механизм и кинетика процесса подробно изучались советскими авторами [7—10] Поскольку гидрирование окиси азота водородом происходит на поверхности платины, скорость процесса может лимитироваться скоростью абсорбции газов кислотой или скоростью их диффузии в жидкости к поверхности платины. Исключить влияние этих факторов можно соответствующим режимом перемешивания (увеличивая поверхность раздела фаз и, следовательно, скорость абсО(рбции). Если таким образом исключить влияние явлений переноса на ход реакции, реакция протекает уже не по диффузионной, а по химической кинетике. При этом, как видно из рис 47, скорость образования гидроксиламинсульфата пропорциональна концентрации катализатора. [c.139]

    Изучению кинетики реакции конверсии окиси углерода на различных катализаторах посвящено большое число работ. Подробное обобщение кинетических данных приведено в работах [3, 23, 44]. Показано, что для большинства промышленных катализаторов в условиях, близких к производственным, протекает реакция первого порядка по окиси углерода и нулевого по водяному пару. Для расчета константы скорости при повышенном давлении обычно пользуются указанной зависимостью. [c.378]

    Кинетика реакций риформинга описывается схемой механизма Лэнгмюра - Хиншельвуда. Соотношение скорости дегидрирования, изомеризации и дегидроциклизации на приработанном, т. е. частично дезактивированном катализаторе, примерно равно 4 2 1. Поэтому количество катализатора в последовательно соединенных реакторах возрастает обратно этому соотношению. Условно можно полагать, что дегидрирование Св-нафтенов протекает в первом реакторе с высоким эндотермическим эффектом и с заметным понижением температуры (= на 40 °С), изомеризация парафинов и С -нафтенов - во втором с меньшим эндотермическим эффектом, а циклизация и гидрокрекинг - в третьем реакторе. [c.774]

    Кинетика каталитической изомеризации жидкого а-пинена в присутствии алюмосиликатного и промышленного титанового катализаторов (титановой кислоты) изучалась Рудаковым, Ивановой, Писаревой и Боровской [77, 155]. Реакцию проводили в колбе с мешалкой (от 60 до 3000 об/мин) и в термостатированной качающейся утке (60 и 180 двойных качаний в минуту). В этих условиях реакция протекает в кинетической области. Это показывает, что свойства катализатора в значительной мере определяют область протекания процесса. [c.59]

    Другой предельный случай реализуется, когда скорость химической реакции намного превосходит скорость диффузии. В этом случае реакция протекает в так называемой диффузионной области ее скорость определяется интенсивностью процесса переноса массы к поверхности катализатора и, следовательно, наблюдаемые кинетические закономерности никак не связаны с механизмом и кинетикой химического превращения на активной поверхности. [c.262]

    Во внешнедиффузионной области все реакции имеют кажущийся первый порядок независимо от их истинной кинетики, так как порядок массопередачи первый. Все катализаторы проявляют одну и ту же активность и селективность, так как последние определяются относительными скоростями диффузии реагентов, промежуточных и конечных продуктов в большей степени, чем кинетикой реакции. Реакцию, протекающую в этой области, часто рассматривают как определяемую массопереносом к поверхности катализатора, называя ее реакцией, лимитируемой диффузией через пленку . Такая терминология не вполне строга по следующим причинам. Во внешнедиффузионной области две стадии протекают последовательно, и в установившемся состоянии их скорости равны друг другу. Лимитирующей же является та из них, на которой расходуется большая [c.20]

    Подобным же образом нафталин можно окислить одновременно во фталевый ангидрид и нафтохинон, хотя последний и окисляется дальше во фталевый ангидрид и оба эти продукта медленно окисляются в малеиновый ангидрид. Окисление о-ксилола во фталевый ангидрид протекает легко на катализаторах из пятиокиси ванадия [172] было проведено несколько фундаментальных исследований по кинетике этой реакции и по изучению поведения катализаторов. Катализатор в значительной степени восстанавливается в обычных условиях окисления [173] так, уже при 1% о-ксилола в воздухе образуется много каталитически неактивной УаО , а при 3% о-ксилола обнаруживается УгО . По-видимому, реакция протекает с восстановлением поверхности и с ее повторным окислением кислородом. Представляется интересным проверить это явление, используя 01. Некоторое подтверждение этого дает исследование [123] изменений электропроводности и термо-э. д. с. в присутствии ксилола или исходных для окисления смесей. Катализатор представляет полупроводник п-типа с анионными вакансиями при нормальном давлении кислорода. Кислород хемосорбируется лишь в ограниченном количестве, так как эта хемосорбция деплетивная. При соприкосновении с углеводородом поверхностная проводимость возрастает либо углеводород образует положительный ион и электроны, либо он удаляет ионы кислорода и освобождает электроны [c.332]

    Изучение кинетики реакций, в которых участвуют твердые вещества, имеет не только теоретическое, но и большое практическое значение. Большинство реакций, имеющих значение для техники, протекает с участием твердых веществ. Достаточно указать на такие промышленные процессы, как получение катализаторов для гетерогенного катализа, агломерация руд, производство керамических изделий, огнеупоров, цемента, металло- [c.119]

    Учитывая, что исходное сырье представляет собой сложную систему как в химическом, так и в физическом отношении, а все основные и побочные реакции протекают на поверхности полидисперсных катализаторов в условиях нарастающей дезактивации, исследование проблем кинетики процессов каталитического гидрооблагораживання остатков строится на двух уровнях теоретических представлений. На первом уровне не учитывается гетерогенность протекания процесса, т. е. используются формальные подходы гомогенного катализа, основанные на различных эмпирических моделях, описывающих формальную кинетику основных реакций [55]. На втором уровне используются макро-кинетические методы гетерогенного катализа с учетом закономерностей диффузионных процессов, протекающих на зерне и в порах катализатора и использующих математические модели, связьшающие материальные балансы изменения концентраций реагентов с диффузионными характеристиками зерна и сырья, объединенные известными приемами. диффузионной кинетики [27]. [c.70]

    Когда реакции протекают в однофазном потоке с временами порядка десятка и более минут, то кинетику, как указывалось, удобнее изучать статическим методом. Временем смешения реагентов при указанной длительности реакций можно пренебречь. При отсутствии катализатора реакцию ведут в обычной аппаратуре (колбе, аппарате с мешалкой), снабженной измерителем температуры и либо помещенной в термостат, либо адиабатизированной, либо снабженной автоматической регулировкой температуры. Естественно, что в случае нагрева содержимое приходится перемешивать или вести процесс при кипении, а при необходимости — снабжать реактор обратным холодильником. Объем проб, отбираемых из аппарата, в сумме не должен превышать нескольких процентов (1—5%) от общего реакционного объема. Пробы должны отбираться из реактора не равномерно по времени, а в начале чаще, затем реже. Еслп реакции протекают в присутствии гетерогенного катализатора, то в данных случаях проще всего его вводить в реактор в раздробленном виде и рассчитывать скорость реакции на единицу массы или объема катализатора. В этом случае обязательно достаточно интенсивное перемешивание, чтобы катализатор полностью находился во взвеси. Бояться при этом диффузионных помех, как это вытекает из соображений, изложенных в гл. 3 и 10, не следует. При необходимости изучать кинетику относительно медленных гетерогенно-каталитических реакций на зернах промышленного размера можно применять статические аппараты с внутренним контуром циркуляции (см. стр. 69), но при этом нужно убедиться в отсутствии внешнедиффузионного торможения (см. стр. 73—75). [c.65]

    Из табл. 2.5 видно, что дробление катализатора не сказывается на скорости реакции при 400° С, но значительно повышает ее при 450° С. Это является зкспериментальным доказательством того, что при 400° С реакция протекает в кинетической области, а при 450° С — В диффузионной. Известно [38], что кинетика к1рекинга кумола в кинетической области может быть описана уравнением [c.38]

    Кинетическая область. Если диффузия протекает значительно быстрее реакции, то кинетика процесса определяется механизмом собственно реакции. Если катализатор непористый, то реакция протекает на поверхности частиц катализатора. Если реакции на поверхности быстрее диффузии в поры, но медленнее внешней диффузии, то реакция также протекает на поверхности катализатора независимо от процесса диффузии. Это случаи протекания реакции во виешней кинетической области. Если скорость процесса определяется собственно механизмом реакции на всей внутренней и внешней поверхности катализатора, то процесс проходит во внут-рикинетической области. В первом случае скорость реакции пропорциональна внешней поверхности частиц катализатора (или / к), во втором — его удельной поверхности. [c.144]

    Для изучения кинетики гидрирования на поверхности катализатора, т. е. для проведения реакции в кинетической области, необходимо исключить диффузионные процессы, что достигается изменением скорости перемешивания, температуры, количества гидрируемого вещества, катализатора и т. д. Это подтверждается рядом работ. С. Ю. Елович и Г. М. Жаброва [ИЗ] при изучении кинетики гидрирования стирола в уксуснокислом растворе над Р1/Ва304 установили, что при сильном встряхивании реакция протекает в кинетической области по двойной связи винильного радикала с постоянной скоростью, подчиняясь уравнению нулевого порядка при малых скоростях встряхивания гидрирование протекает в диффузионной области. В. И. Гольданский и С. Ю. Елович [114], гидрируя олеиновую кислоту над тем же катализатором, нашли, что положение границы между диффузионной и кинетической областями зависит от температуры и количества катализатора, причем в кинетической области скорость реакции пропорциональна количеству катализатора, в диффузионной —она стремится к некоторой предельной величине. Д. В. Сокольский и Л. А. Бувалкина [115] изучали кинетику гидрирования диметилацетиленилкарбинола в спиртовом растворе над скелетным N1 и установили, что изменением скорости размешивания реакционной среды можно разграничить диффузионную и кинетическую области при гидрировании, причем в диффузионной области скорость реакции зависит от интенсивности перемешивания, в кинетической же—не зависит. [c.432]

    Время, в течение которого реакция протекает медленно, а в реакционной смеси накапливается катализатор, называют временем индукции. [Эмма-нуэль Н. М., Кнорре Д. Г. Курс химической кинетики. — М. Высшая школа, 1969]. — Прим. перев. [c.195]

    Реакция идет без катализатора, однако кислоты, спирты и другие гидроксилсодержащис соединения се сун сственно ускоряют. Реакция протекает в растворе с заметным уменьшением объема, и для исследования ее кинетики удобно воспользоваться дилатометрическим методом (см. разд. 3.5.3). Чтобы обеспечить возможность варьирования начальных концентра ций реагентов в качестве растворителя исшльзуют хлорбензол. В качестве катализатора используют метанол (7). [c.106]

    Исследование кинетики катализируемого ионом свинца взаимодействия бензонитрилов с этиленгликолем в присутствии воды показало что реакция имеет первый порядок относительно нитрила и воды. Порядок реакции относительно катализатора оказался равным 0,44. Продукт реакции — р-оксиэтилбензоат является ингибитором данной реакции. Влияние заместителей в бензонитриле на его реакцию с этиленгликолем и водой подчиняется уравнению Гаммета (электроноакцепторные заместители ускоряют реакцию). Сложные эфиры образуются также при использовании пропандио-лов-1,2 и -1,3 и бутандиола-2,3, но с меньшей скоростью, чем в случае этиленгликоля. Реакции терефталонитрила с тетраметилен-и пентаметилегликолями протекают с ничтожно малыми скоростями. [c.82]

    Кинетический фактор связан с особенностями механизма и кинетики протекающего процесса. В реакции окисления аммиака 4ЫНз + 5О2 = 4М0 + 6Н2О стехиометрическое соотношение реагентов О2 МНз = 1,25. Реакция протекает во внешнедиффузионной области и лимитируется переносом аммиака - его концентрация у поверхности мала. При стехиометрическом соотношении реагентов смесь аммиака с воздухом будет содержать 14% МНз и 17,5% О2. Допустим во внешнедиффузионном режиме степень превращения аммиака на поверхности катализатора = 0,99. Поверхностные концентрации реагентов примерно одинаковы Ср Нзп 4 (1 - 0,99) = 0,14%, = = 17,5 - 1,25 (14 0,99) = 0,17% и в этих условиях МПз окисляется в ос-новном до N2- Необходим избыток кислорода, вытесняющий аммиак с поверхности катализатора, тогда окисление будет протекать преимущественно до N0. Если же использовать соотношение О2 МНз = 1,8, те. в аммиачно-воздушной смеси будет содержаться 10% NHз и 18% О2, то в этом случае концентрации реагентов на поверхности катализатора будут другими Ср Нзп 0,1%, [c.300]

    Исследование [60] кинетики восстановления N0 на цинкхроммедном катализаторе показало, что при восстановлении окиси азота до элементарного азота лимитирующей стадией является взаимодействие адсорбированных компонентов реакции с выделением воды и атомарного азота. Если реакция протекает до образования аммиака, то, как считают авторы [60], водород должен находиться в диссоцихь-роваином состоянии. В этом случае диссоциация водорода и будет контролирующей стадией процесса. [c.443]

    Реакция дикетена и анилина с образованием анилида ацетоуксусной кислоты была открыта Уилсмором и Чиком [260, 261]. На этой реакции основан промышленный способ получения различных анилидов ацетоуксусной кислоты, применяемых в качестве промежуточных продуктов в синтезе красителей. Во МН0ГИХ случаях, даже с ароматическими аминами, конденсация протекает достаточно быстро в водной среде, в которой растворен или суспендирован амин. Подробно эта конденсация описана в работе Бёзе [26]. При изучении кинетики реакции была установлена в общих чертах зависимость скорости реакции от константы диссоциации амина [174]. В случае очень слабых оснований, например дифениламина, л<-нитроанилина или карбазола, в качестве катализаторов применяются третичные амины. При реакции с аминами с константой диссоциации, меньше 9-10" Лейси и Конноли [168] предложили использовать такой катализатор, как триметиламин в качестве инертного растворителя они рекомендовали толуол. Перекалив и сотр. [195, 198] в качестве катализатора реакций этого типа применяли пиридин они получили N-ацильные производные индола [ср. 121] и фталимидина. [c.239]

    Кинетический фактор обусловлен особенностями механизма и кинетики протекающего процесса. В окислении аммиака 4NH3 + 5О2 = 4NO + 6Н2О стехиометрическое соотношение реагентов 02 КНз = 1,25. Реакция протекает во внешнедиффузионной области и лимитируется переносом аммиака -его концентрация у поверхности катализатора мала. При стехиометрическом соотношении реагентов также мала будет концентрация кислорода. В этих условиях NH3 окисляется в основном до N2. Необходим избыток кислорода, чтобы он вытеснил аммиак с поверхности катализатора, и тогда последний окисляется преимущественно до NO. Необходим избыток кислорода, [c.249]

    Конверсия метана двуокисью углерода. Альтшулер и Шафир [95] изучили кинетику процесса конверсии метана двуокисью углерода при атмосферном и повышенном давлениях без катализаторов при температуре до 1100 °С. Экспериментальные данные показывают, что степень конверсии метана при различных температурах и давлениях практически не зависит от состава газа. По-видимому, данная реакция протекает по первому порядку, и зависимость скорости реакции от концентрации метана имеет линейный характер. При одной и той же температуре с увеличением давления скорость реакции и степень конверсии метана возрастают, причем зависимость между ними описывается почти прямой линией. Энергия активации при всех давлениях р вна примерно [c.196]

    Заканчивая рассмотрение вопроса о кинетических закономерностях окисления углеводородов, следует подчеркнуть, что, вероятно, повышение селективности процесса невозможно без изменения химических и электронных свойств поверхности катализаторов. Устранение побочных процессов и доокисления образующихся кислородсодержащих продуктов может несколько повысить селективность, но только до определенного предела. Дальнейшее же увеличение селективности связано с характером образующихся на новерхности активных перекисных радикалов и направлением их превращений. Кинетика реакции окисления различных углеводородов относительно проста, и в уравнения скоростей входят концеитрации реагирующих веществ в нулевой или первой степени только в редких случаях наблюдаются дробные показатели. Однако изучение адсорбции углеводородов на различных окислительных катализаторах показало, что поверхность этих контактов неоднородна и характеризуется эксионенциальной функцией распределения по теплотам сорбции. Вероятно, хорошее соответствие теоретически выведенных уравнений (с использованием изотерм Лэнгмюра, справедливых только для однородных поверхностей) и опытных данных указывает, что, хотя процессы протекают в действительности на неоднородных поверхностях, для них возможна имитация однородных поверхностей. Возможно также, что некоторые реакции протекают при относительно большом занолнении иоверхности реагирующими компонептами, и тогда также возможна квазиоднородность . Нами не рассматриваются более сло кные случаи протекапия каталитической реакции на неоднородных поверхностях. [c.177]

    Истинная кинетика реакции характеризуется первым порядком по водороду и нулевым порядком по ацетилену и этилену. Очевидно, что если наблюдаются диффузионные ограничения в отношении ацетилена, то гидрирование будет протекать в глубине гранулы. Эксперименты Марса и Горгельса показали, что задача может быть решена различными путями, основанными на теории. К числу этих путей относятся использование широкопористых катализаторов нанесение палладия тонким поверхностным слоем на гранулу работа при низких температурах. Последняя должна быть достаточно низкой для того, чтобы уменьшить скорость реакции до значения, соответствующего Т) a 1. [c.214]

    С целью такого обобщения Киперманом [23] рассмотрена кинетика га-о-коп-версии водорода на различных металлических катализаторах с точки зрения протекания ее на неоднородной поверхности при достаточно высоких температурах, при которых реализуется химический механизм. Автором наблюдались следующие кинетические закономерности на Ni [11, 12, 14, 24, 25], Со, Fe [241 реакция протекает по уравнению дробного порядка. На Pt, Pd, W [24, 26, 27] порядки реакции близки к нулевому и на Си, Ag, Au [24, 28] — к первому. Как видно из табл. 10, при переходе от одной группы катализаторов к другой, кинетические характеристики реакции /г-о-конверсии закономерно меняются [23]. Так, скорость реакции оказывалась наименьшей, а энергия активации наибольшей при протекании реакции по первому порядку на металлах подгруппы 16. Это объясняется отсутствием у этих металлов -электронных вакансий [24, 27, 28]. Скорость реакции значительно выше на металлах VIII группы при протекании реакции по дробному или близкому к нулевому порядку. Наибольшая скорость — на вольфраме. Вольфрам проявляет повышенную активность по сравнению с металлами VIII группы и в некоторых других реакциях с участием водорода, например в реакции изотопного обмена дейтерия с углеводородами [29]. [c.50]


Смотреть страницы где упоминается термин Кинетика реакций, протекающих без катализатора: [c.183]    [c.215]    [c.45]    [c.60]    [c.201]    [c.325]    [c.60]   
Основы биологической химии (1970) -- [ c.164 , c.165 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатор кинетика



© 2025 chem21.info Реклама на сайте