Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коксовый гаэ разделение

    Для разделения коксового газа применяются установки с турбодетандером производительностью 32 ООО м ч. Очищенный коксовый газ под давлением 0,16 МПа подают в агрегат разделения. В нем предусмотрены три ступени охлаждения коксового газа. В первой происходит конденсация и вымораживание влаги и остатков бензола во второй — конденсация пропиленовой фракции, конденсация и концентрирование фракции этилена в третьей ступени — конденсация метановой фракции. В состав установки входят также аппараты для охлаждения и сжижения азота, отмывки газовой смеси от СО и остатков СН4 и дозирования азота. [c.45]


    Разделение коксового газа по Линде [c.79]

    Прямой коксовый газ представляет собой сложную смесь газообразных и парообразных веществ. Помимо водорода, метана, этилена и других углеводородов, оксида и диоксида углерода, азота, в 1 м газа (при 0°С и 10 Па) содержится 80—130 г смолы, 8—13 г аммиака, 30—40 г бензольных углеводородов, б— 25 г сероводорода и других сернистых соединений, 0,5—1,5 г цианистого водорода, 250—450 г паров воды и твердых частиц. Газ выходит из коксовой печи при 700°С. Процесс разделения прямого коксового газа (см. рис. 16) начинается в газосборнике, в который интенсивно впрыскивается холодная надсмольная вода, и газ охлаждается примерно до 80°С, благодаря чему из него частично конденсируется смола. Одновременно в газосборнике из газа удаляются твердые частицы угля. Для конденсации смолы необходимо охлаждение газа до 20—30°С оно может производиться в холодильниках различной конструкции — трубчатых, оросительных, непосредственного смешения. В схеме, приведенной на рис. 16, используются трубчатые холодильники, в которых происходит конденсация паров воды и смолы. Понижение температуры газа способствует конденсации смолы и паров воды, увеличивает растворимость аммиака в конденсирующейся воде, что приводит к частичному поглощению аммиака с получением надсмольной воды. Смола и надсмольная вода из холодильника 2 стекают в сборник, где разделяются по плотности. В холодильниках не удается полностью сконденсировать смолу, так как она частично превращается в туман. Смоляной туман удаляется из коксового газа электростатическим осаждением в электрофильтрах, работающих при 60 000—70 000 В. [c.44]

    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]


    Водород может быть получен также при разделении коксового газа. После удаления из газа углекислоты и бензола он подвергается ожижению по Линде, причем конденсируются все его составляющие, [c.79]

    Слесарю одного предприятия было дано задание смонтировать трубу для продувки метановой фракции агрегата разделения коксового газа. При монтаже труба не центрировалась и нужно было [c.10]

    ПКГ из коксовых камер при температуре 650—670 С поступает в газосборники коксовой батареи, где усредняется по составу и охлаждается впрыскиванием холодной надсмольной воды до 85—90°С. После этого газ направляется в цех улавливания и разделения, в котором после дополнительного охлаждения до 25—35°С из него выделяются КУС, СБ и соединения аммиака. Последовательность этих операций представлена на схемах (рис. 8.9 а, б, в, г). [c.176]

    Вследствие неплотностей в соединениях аппаратов медного блока агрегата разделения коксового газа в изоляционном слое ваты накапливается аммиак. При остановке агрегата аммиак испаряется. [c.12]

    Азот для синтеза аммиака получают при разделении воздуха методом глубокого охлаждения. Водород получают различными методами конверсией метана, содержащегося в природном газе, попутных нефтяных газах, газах нефтепереработки и остаточных газах производства ацетилена методом термоокислительного пиролиза конверсией окиси углерода глубоким охлаждением коксового газа электролитическим разложением воды газификацией твердого и жидкого топлива. [c.33]

    Взрывобезопасность разделения горючих газов методом глубокого охлаждения. Эти процессы широко применяются при переработке коксового газа, продуктов высокотемпературного пиролиза и конверсии насыщенных углеводородов. За последние годы получил значительное распространение высокоэффективный метод промывки жидким азотом технического водорода, используемого для производства аммиака. При этом удаляются остатки окиси углерода — каталитического яда этого процесса. [c.84]

    Ректификационная колонна предназначена для разделения продуктов коксования, поступающих из коксовых камер, на отдельные фракции газ, бензин, легкий и тяжелый газойль. Кроме того, в колонне проводят нагрев исходного сырья и его разбавление газойлевыми фракциями путем прямого контакта с горячими продуктами из коксовых камер. [c.100]

    Нагрев сырья производится в трубчатой печи П1. Печь двухкамерная, обычной типовой конструкции. Конвекционная камера расположена по середине печи, по обеим сторонам от нее расположены радиантные камеры. Змеевик трубчатой печи разделен на две секции 1) нагревательный змеевик (для предварительного подогрева сырья) и 2) реакционный змеевик или змеевик коксова- [c.319]

    При разработке первых газогенераторов из-за очень сложной природы каменного угля пришли к выводу о необходимости разделения процесса на стадии сначала сухая перегонка каменного угля, а затем собственно газификация коксового остатка. Другими словами, каменные угли, содержащие значительное количество легколетучих компонентов, сначала подвергались нагреву без доступа воздуха до температуры примерно [c.152]

    Коксовые печи относятся к печам косвенного нагрева — в них теплота к коксуемому углю от греющих газов передается через стенку. Коксовая печь, или батарея (рис. 14), состоит из 61—77 параллельно работающих камер, представляющих собой длинные, узкие каналы прямоугольного сечения, выложенные из огнеупорного кирпича. Каждая камера имеет переднюю и заднюю съемные двери (на чертеже не показаны), которые в момент загрузки камеры плотно закрыты. В своде камеры находятся загрузочные люки, которые открываются при загрузке угля и закрыты в период коксования. Уголь в камере нагревается через стенки камеры дымовыми газами, проходящими по обогревательным простенкам, находящимся между камерами. Горячие дымовые газы образуются при сжигании доменного, обратного коксового или, реже, генераторного газов. Теплота дымовых газов, выходящих из обогревательного простенка, используется в регенераторах для нагрева воздуха и газообразного топлива, идущих на обогрев коксовых печей, благодаря чему увеличивается тепловой КПД печи. При работе коксовой камеры следует обеспечить равномерность прогрева угольной загрузки. Для этого необходимо равномерно распределить греющие газы в обогревательном простенке и правильно выбрать габариты камеры. Равномерное распределение греющих газов достигается разделением обогревательных простенков вертикальными перегородками на ряд каналов, называемых вертикалами. По вертикалам движутся греющие газы, они отдают теплоту стенкам камеры и уходят в регенераторы. При установившемся режиме количество теплоты Q, переданное за единицу времени, в печах косвенного нагрева определяется по уравнению [c.40]


    Разделение продуктов коксования. Сначала производят разделение прямого коксового газа. Из него конденсируют смолу и воду, улавливают аммиак, сырой бензол и сероводород. Затем подвергают разделению надсмольную воду, каменноугольную смолу и сырой бензол с получением индивидуальных веществ или их смесей. Разделение продуктов коксования основано на многих типовых приемах и процессах химической технологии массо- и теплопередаче при непосредственном соприкосновении газа с жидкостью, [c.43]

    Ректификационная колонна предназначена для разделения продуктов коксования, поступающих из коксовой камеры, на газ, бензин и газойлевые фракции, а также дпя подготовки вторичного сырья коксования. На установках с камерами диаметром 4,6-5,5 м ректификационные колонны имеют диаметр 3,2-4, 5 м и высоту 28-48 м. Внутреннее оборудование ректификационной колонны обеспечивает испарение, контактирование и ректификацию углеводородов. [c.118]

    Коксование каменного угля является в настоящее время основным способом химической переработки твердых топлив. Во всем мире сложилась единая схема коксования угля, улавливания и разделения химических продуктов коксования, представленная на рис. 20. В мире ежегодно коксуют около 400 млн. т угля. Коксование осуществляют в вертикальных камерных печах с внешним обогревом, объединенных в батареи по 45—75 печей в каждой. Объем печей за последние десятилетия увеличился с 19—20 до 40—45 м Каждая камера является аппаратом периодического действия, тогда как батарея в целом обеспечивает практически непрерывную выдачу готового кокса и коксового газа. [c.149]

    Сырьем в производстве аммиака является азотоводородная смесь (АВС) стехиометрического состава N2 Н2 = 1 3. Так как ресурсы атмосферного азота практически неисчерпаемы, сырьевая база аммиачного производства определяется вторым компонентом смеси — водородом, который может быть получен разделением обратного коксового газа, газификацией твердого топлива, конверсией природного газа (рис. 14.5). [c.192]

    При эксплуатации воздушного компрессора типа ДВУ-20-6/220 в цехе разделения воздуха произошел разрыв холодильника четвертой ступени. Причина аварии — масло К-28, способное выде- лять горючие и взрывоопасные газы. В производстве аммиака отмечен случай разрушения компрессора типа ВТБК-ЮОО вследствие перегрузки механизма движения. Причина аварии — осмоле-ние внутренних торцов цилиндра и поршня компрессора, поскольку очистка коксового газа от смол была неудовлетворительной. [c.180]

    Технологическая схема улавливания и разделения прямого коксового газа представлена на рис. 8.10. [c.178]

    Приведите в виде схемы последовательность операций при разделении прямого коксового газа. [c.190]

    При коксовании нефтяных остатков получают газ, бензин, средние и тяжелые коксовые дистилляты и нефтяной кокс. Выход отдельных продуктов коксования и их качество зависят от химического и фракционного состава сырья, от условий ведения процесса коксования и разделения продуктов температуры и продолжительности коксования, давления в системе, объема реакторов, коэффициента рециркуляции, температурного режима колонны разделения и др. Все эти технологические факторы влияют на степень испарения и термического превращения сырья. От соотношения этих процессов зависят выходы отдельных продуктов коксования и их качество. [c.121]

    В нижних частях комбинированных аппаратов кокс перемещается в движущемся слое, который можно представить как систему из коксовых частиц, разделенных газовыми прослойками. Теплопередача в движущемся коксовом слое обусловливается конвекцией, контактной теплопроводностью, передачей тепла через газовую прослойку и радиацией. [c.262]

    Арматура для отвода парогазовых продуктов коксования из печи (рис.4.24, 4.25) предназначена для первичного охлаждения и разделения парогазовых продуктов коксования. В состав ее входят стояки с клапанными коробками, газосборники, перекидные газопроводы, прямой газопровод-, аммиакопроводы. Парогазовые продукты при 700-800°С отводятся из камеры коксования через стояки (рис.4.25) — стальные трубы, футерованные шамотным кирпичом или огнеупорным бетоном и установленные на газоотводящих люках с машинной и коксовой сторон коксовых камер или только на машинной. [c.123]

    Образующийся в процессе коксовый газ может быть разделен на два самостоятельных потока. Первый — богатый газ (с теплотой сгорания более [c.221]

    Примером фракционированной конденсации может служить разделение коксового газа, водяного газа и др. [c.425]

    Организационное оформление процессов и оборудования (в цехах, участках и отделениях) зависит от сырья, технологической схемы и объемов производства и может меняться как по объединению технологических и вспомогательных подразделений, так и по разделению однотипных цехов. К основным цехам на большинстве коксохимических предприятий относятся углеподготовительный, углеобогатительный (углеобогатительная 4 абрика, УОФ), коксовый, улавливания химических продуктов коксования (цех улавливания) очистки коксового газа от сероводорода. (цех сероочистки), переработки сырого бензола (цех ректификации). смолоперерабатывающий, пекококсовый. На некоторых предприятиях имеются основные цехи по глубокой переработке углей и продуктов коксования фта-левого ангидрида, роданистых соединений, термоантрацитовый и др. [c.6]

    Блок разделения и охлаждения установки замедленного коксования состоит из атмосферной ректификационной колонны с двумя боковыми отпарными секциями (рис. IV-18). В нижней частн колонны расположены каскадные тарелки для охлаждения смеси паро(в продуктов ко)ксования. Горячие пары продуктов коксова- [c.228]

    Аварии, связанные с загазованностью атмосферы производственных помещений взрывоопасными и токсичными газами, происходили при разрыве в результате коррозии трубопроводов между холодильниками и маслоотделителями на газовых компрессорах, маслоотделителей и цилиндров вследствие их низкого качества изготовления, а также в результате проскока газа через фланцевые соединения и сварные швы трубопроводов и сосудов. Так, в производстве аммиака разорвался газопровод нагнетания первой ступени поршневого компрессора фирмы Сюрт , предназначенного для сжатия и подачи коксового газа в отделение очистки цеха синтеза аммиака и далее в агрегаты разделения коксового газа. Авария произошла на участке между компрессором и холодильником нагнетательного газопровода первой ступени компрессора. Причина аварии — цлохое качество сварного шва газопровода. [c.181]

    Сопоставление показателей каталитической и высокотемпературной конверсии метана коксового газа показало, что процесс высокотемпературной конверспи не требует предварительной очистки коксового газа от сероорганических соединений. При этом отпадает необходимость строительства отделения каталитического разложения органической серы. Однако высокотемпературная конверсия требует повыИхенного расхода исходного коксового газа и кислорода, а также увеличения каптнталовложений по стадии разделения воздуха. В результате расчетов было установлено, что величина текущих затрат по схеме с высокотемпературной конверсией примерно на 5% выше, чем по схеме с каталитической конверсией. [c.16]

    В производствах синтетического аммиака используются различные способы получения азотоводородной смеси 1) двухступенчатая каталитическая конверсия метана водяным паром [(2—3)-10 Па] 2) высокотемпературная конверсия природного газа (без катализатора при температуре 1400—1450°С и давлении 3-10 Па) 3) кислородная конверсия газа либо под атмосферным давлением, либо под повышенным давлением 4) разделение коксового газа. [c.201]

    В слой нагретого теплоносителя распыливается сырье, которое равномерно распределяется на поверхности теплоносителя и откоксовывается на нем. Газы и дистиллятные пары через циклоны в верхней части реактора поступают на разделение в ректификационную колонну. Температура в реакторе возможна 485—560 °С и выше. Обычно ее поддерживают на уровне 510—540 °С. Давление в реакторе 0,3—1 ат. Сырье впрыскивают в нескольких точках по окружности и по высоте реактора. На стенках реактора возможно образование коксового слоя. Коксовая пыль, выносимая из циклонов вместе с парами коксового дистиллята, улавливается потоком сырья в нижней части ректификационной колонны. Колонна может быть расположена над реактором, но по конструктивным соображениям ее часто устанавливают отдельно [299]. [c.126]

    Коксовый жирный уголь В опытах всегда использовали с нормальной для станции Мариено гранулометрией (90% <2 мм). Жирный пламенный, поставляемый в виде мелочи, подвергали разделению на 3 фракции путем грохочения так, как показано в табл. 53. [c.329]

    Разделение коксового газа. Метод фракционированной конденсации с применением глубокого охлаждения используют для разделения коксового газа, а также для очистки конвертированного газа от оксида углерода после парокислородной конверсии метана. Разделение коксового газа конденсацией его компонентов служит одним из методов получения водорода или азотоводородной смеси. Попутно выделяют этиленовую и метановую фракции, а также фракцию оксида углерода. Эти побочные продукты служат сырьем для органического синтеза. [c.77]

    Коксование в кубах периодического действия — это наиболее старая, малоэффективная форма процесса. В настоящее время коксовых кубовых устаповок сохранилось немного. На них иолучают некоторые специальные сорта нефтяного кокса. Наиболее распространено коксование полунепрерывное, или заме-длеиыое. Процесс проводят в пеобогреваемых реакционных камерах. Подогретое в печи до 480—510 °С сырье (обычно в смеси с рециркулятом) поступает в камеру и там после довольно длительного выдерживания коксуется. Продукты разложения в виде парогазовой смеси поступают на разделение в ректификационную колонпу, а остаток постепенно превращается в кокс. Сырье в камеру подают до тех пор, нока кокс не займет около 4/5 высоты роактора, после чего сырье переключают на другую камору. После пропарки и охлаждения водой реактор освобождают от [c.124]

    Нижний подвод тепла (нижнее распределение газа и воздуха) влечет за собой разделение регенераторных камер на отдельные секции, число которых соответствует числу подводов. Во всех системах горизонтальных коксовых печей подача тепла, а значит, отопительного газа и его распределение по длине отопительного простенка происходит раздельно по машинной и коксовой стороне. В связи с этим газоподво-дяшая арматура и система отвода продуктов сгорания по [c.95]

    Сжатие коксового газа связано с большими энергозатратами, зависящими от того, какая избрана конструкция компрессора и во сколько ступеней газ сжимают до заданного конечного дабления. При использовании современных центробежных компрессоров и сжатии в две ступени до конечного давления 0,8—1,0 МПа (промежуточное давление - 0,35-0,4 МПа) мощность привода составляет для потока газа 130тыс.нм /ч около 16 тыс. кВт. Перерасход энергии по стоимости сопоставим с выигрышем, получаемым при улавливании бензола под давлением или даже превосходит его. Поэтому в коксохимической промышленности улавливание под давлением чаще применяют в тех случаях, когда газ далее используется потребителем под давлением выше атмосферного. Так, при использовании коксового газа в качестве источника водорода его разделение проводят под давлением 1,2—2,0 МПа. Если газ предполагается использовать в качестве восстановителя или источника энергии для доменного процесса, то он должен иметь давление не менее 0,5 МПа. Наконец, если избыточный коксовый газ передается в сеть дальнего газоснабжения, то его давление должно быть повышено до 1,6—2,0 МПа. Во всех этих с. учаях предварительное сжатие и обработка под давлением оказываются исключительно рациональным мероприятием. [c.158]

    Разделение воды, смолы и фусов — сложных коллоидных систем, образованных частицами угольной шихты, мелкодисперсными сажистыми частицами и частицами кокса, вынесенными иэ печей, со смолой в большой мере зависит от режима работы печей (крупность шихты, режимы загрузки, система бездымной загрузки, режим работы газосборника), так как при значительном количестве взвешенных частиц и высокой плотности смолы образуются очень прочные эмульсии вода-смола, а в некоторых случаях и стабильные обращенные эмульсии (вода в смоле). Образование особо обводненной смолы и тем более обращенных эмульсий — признак крайне низкого уровня эксплуатации коксовых печей. Выше (см. рис. 8.4) показана тесная связь условий взаимного разделения воды, смолы и фусов с надежностью работы практически всех переделов коксохимического производства. [c.212]

    Абсорбцией называют процесс поглощения растворимого компонента газовой смеси жидким поглотителем. Абсорбцию применяют в промышленности для получения готового продукта (производство кислот), разделения газовых смесей (получение бензола из коксового газа), улавливания вредных (НгЗ, СО, влага) и ценных (рекуперация спиртов и др.) компонентов. При абсорбции происходит контакт жидкости и газа при этом масса одного из компонентов газовой фазы переносится в жидкую фазу или наооорот (десорбция). При наличии разности концентраций ИJIИ парциальных давлений между фазами (движущая сила процесса) происходит процесс массопередачи, который прекращается при достижении состояния равновесия. [c.336]


Смотреть страницы где упоминается термин Коксовый гаэ разделение: [c.155]    [c.72]    [c.78]    [c.218]    [c.227]    [c.336]    [c.214]    [c.237]   
Очистка технологических газов (1977) -- [ c.23 , c.24 ]




ПОИСК







© 2025 chem21.info Реклама на сайте