Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклогексанон применение

    Гидрирование фенола используется в промышленных масштабах как первая стадия производства капролактама. При этом фенол гидрируется на никелевых катализаторах до циклогексанола, который затем дегидрируется до циклогексанона. Применение палладиевых катализаторов дает возможность получать циклогексанон из фенола в одну стадию с высокой избирательностью. [c.226]


    Вулканизаты тиоколов, содержащие 0,5% сшив щего агента, набухают значительно больше ( на 50—100%) [15, с. 115]. Вулканизаты отечественных тиоколов марок I и П, имеющих одинаковую степень разветвленности, также несколько различаются по стойкости к набуханию в растворителях и действию агрессивных сред. Вулканизаты на основе тиоколов марки II меньше набухают в диоксане, дихлорэтане, циклогексаноне и лучше сохраняют свойства после выдержки в разбавленных серной, соляной и азотной кислотах [37]. Такое различие в свойствах объясняется примененной системой отверждения. [c.569]

    Реакция проводится в серии реакторов с применением катализатора палладий на угле. Продукты реакции фильтруются от катализатора и подвергаются ректификации с целью удаления непрореагировавшего фенола, который затем поступает в рецикл. Полученную смесь циклогексанона и циклогексанола разделяют дистилляцией. Циклогексанон направляют затем на переработку в соответствующий оксим классическим методом. После проведения бекмановской перегруппировки капролактам-сырец, выделенный из реакционной массы нейтрализацией аммиаком и последующей экстракцией растворителем, очищается методом кристаллизации из водных растворов.  [c.307]

    Процесс производства капролактама на основе фенола имеет ряд крупных недостатков высокая стоимость фенола, многостадийность процесса, большой расход неорганических продуктов и др. Указанные недостатки могут быть устранены при использовании других способов, основанных на применении для синтеза капролактама циклогексана, вырабатываемого нефтехимической промышленностью в больших количествах и по цене почти в два раза более низкой, чем у фенола. Именно по этой причине циклогексан был первым продуктом, заменившим фенол в производстве капролактама. Характерной особенностью этого процесса является окисление циклогексана в циклогексанон кислородом воздуха в две стадии и последующая переработка циклогексанона в капролактам по известной технологии  [c.307]

    Правило октантов. Одно из наиболее важных проявлений оптической активности связано с внутренне симметричным хромофором, например С = 0, который находится в асимметричном окружении. Большой экспериментальный материал для производных циклогексанона позволил сформулировать правило октантов, нашедшее очень широкое применение и развитие для других классов соединений. Оно связывает знак эффекта Коттона с положениями замещающих групп по отношению к карбонильной группе. На рис. Х.2 показано расположение четырех октантов, задаваемых плоскостями А, В и С, пересекающихся в точке на связи С = 0. Плоскость А является плоскостью симметрии цикла. В плоскости В находится карбонильная группа с двумя атомами углерода цикла Са и Сб- Плоскость С перпендикулярна плоскостям А и В, пересекает связь С = 0 и выделяет четыре октанта, называемых задними. Проекция со стороны карбонильной группы на задние октанты позволяет удобно представить влияние заместителей на знак вращения. Так, аксиальные и экваториальные заместители у атома 3 приводят к отрицательному эффекту Коттона, а у атома 5—к положительному. Экваториальные заместители у атомов [c.205]


    Практическое применение получил двухстадийный метод синтеза адипиновой кислоты. На первой стадии циклогексан. окисляют кислородом воздуха в смесь спирта и кетона (циклогексанол и циклогексанон). Реакцию ведут при 125—130 °С и давлении 2,5 МПа в присутствии катализатора — нафтената кобальта. После отделения непрореагировавшего циклогексана смесь подвергают дальнейшему окислению, которое сопровождается деструкцией цикла II образованием адипиновой кислоты  [c.242]

    Окислительное расщепление кетонов и спиртов с открытой цепью [140] редко находит практическое применение, но не потому, что эти соединения (за исключением диарилкетонов) не окисляются, а потому, что в результате обычно получается сложная смесь продуктов, не поддающаяся разделению. Однако реакция оказывается весьма полезной в случае циклических кетонов и соответствующих вторичных спиртов, из которых с хорошими выходами синтезируют дикарбоновые кислоты. Так, получение адипиновой кислоты из циклогексанона (приведено на схеме выще) представляет собой важный промышленный процесс. Для этой реакции наиболее широко применяются бихромат в кислой среде и перманганат, хотя из- [c.278]

    Химическая промышленность выпускает чрезвычайно широкий ассортимент альдегидов, кетонов и органических кислот. Наибольшее применение нашли формальдегид, ацетальдегид, бутираль-дегид, акролеин, ацетон, циклогексанон, метилэтилкетон, уксусная и высшие жирные кислоты. [c.168]

    Алифатические углеводороды в парообразном состоянии можно окислять до кетонов с хорошими выходами при помош,и кислорода и бромистого водорода, который служит источником свободных радикалов (пример а). Окисление циклогексана изучено подробно, поскольку оно находит промышленное применение. Методы окисления, используемые в промышленности, приводят к получению ряда продуктов и в том числе гидроперекиси, спирта, кетона и продуктов расщепления и, по-видимому, мало подходят для применения в лаборатории. Вероятно, наилучшим лабораторным методом превращения углеводорода в кетон является нитрозирование при ультрафиолетовом освещении. При этих условиях, например, из циклогексана, хлористого нитрозила и концентрированной соляной кислоты при температуре от —5 до 5 °С был получен оксим циклогексанона со степенью конверсии 45—65% [611. [c.101]

    Применение надуксусной кислоты в инертном растворителе при окислении циклопентанона и различных циклогексанонов приводит к образованию мономерных лактонов с высокими выходами [26] (пример 6.5). [c.313]

    Более безопасными являются схемы, исключающие применение азотистоводородной кислоты. Оксим циклогексанона (II) или капролактам [c.177]

    Был применен перегнанный циклогексанон с т. кип. 154-156°., , . [c.19]

    Циклогексанон необязательно должен быть свежеперегнанным. При использовании продажного препарата был получен такой же выход, как и при применении вещества, подвергнутого тщательному фракционированию. [c.215]

    Катализаторы на основе металлического цинка. Хорошие результаты дает применение в качестве катализатора чистого цинка в виде гранул Но его использование осложняется тем обстоятельством, что температура плавления цинка (419,5°С) совпадает с температурой дегидрирования, и малейший перегрев приводит к сплавлению гранул и ухудшению каталитического действия. Поэтому применяют цинк на носителях или в виде сплавов. Так, цинк-железный сплав при содержании в нем 12,6% железа обеспечивает выход циклогексанона в расчете на прореагировавший циклогексанол, равный 93% (при 390 °С) [9]. Несколько лучшие результаты получают при использовании металлического цинка, нанесенного на железную основу [10]. [c.107]

    Указанные соединения отвечают требованиям, предъявляемым к экстрагентам мало растворимы в воде, кипят при высоких температурах, большинство из них легче воды. Для понижения их вязкости, увеличения разности в плотности с водой и повышения температур воспламенения применяются они в виде растворов в керосине или других растворителях. Повышение температуры воспламенения особенно важно для применения циклогексанона и ацетофенона. [c.212]

    Реакция циклогексанона с алкилиодидами в присутствии амида натрия в неполярном раствсрителе может быть использована для замещения от одного до четырех а-метиленовых водородов [91. Обсуждаются многочисленные примеры применения реакции этого типа для получения циклогексановых углеводородов. [c.471]

    Для второго этапа — окисления в адипиновую кислоту —используют чистую смесь циклогексанона и циклогексанола. Существует непрерывный метод выделения, нашедший применение в промышленности при 80 °С и времени контакта 5 мин смесь обрабатывают 50—60%-ной азотной кислотой катализатор состоит из солей меди и ванадия. Весовое соотношение HNOз (в пересчете на 100%-ную) и окисляемой смеси составляет 2,5—6. [c.161]

    Следует упомянуть две работы о применении оснований более сильных, чем гидроксид натрия в одной из них описано получение растворимых литиевых, натриевых и калиевых енолятов циклогексанона при действии твердых ЫН, NaH и КН, которое становится возможным или ускоряется в присутствии криптандов. Полученные активированные еноляты способны отрывать протоны даже от эфиров, служаи их растворителем [1309]. В другой работе отмечено, что бутиллитий не реагирует с карбонильными соединениями или карбоксилатами в присутствии криптанда [2.1.1] вместо этого идет депротонирование в а-поло-жение [1482]. [c.194]


    Тантал и ниобий вводились в смесь кислот в виде гидратов окисей, полученных путем гидролиза безводных хлоридов. Весовое отношение ниобия и тантала составляло 1,2. В проведенных определениях пользовались 3,3 н. фтористоводородной кислотой и 0,5 н. соляной кислотой, в 1 л смеси кислот содержалось 16 г тантала и 19,2 г ниобия. Отношение органического растворителя и кислотной фазы было равно 1 1. В условиях опытов в органическуюфазу переходил главным образом тантал, ниобий—в гораздо меньшем количестве. Наиболее благоприятное распределение достигается при применении метилизобутилкетона (р =736), который применялся и в дальнейших исследованиях, а также циклогексанона ( 5=856). В дальнейшем было установлено, что экстракция заметно зависит от концентрации кислот и металлов и лишь в ничтожной степени от отношения ниобия к танталу в исходном растворе. С увеличением концентрации фтористоводородной и соляной кислот количество экстрагированного ниобия в исследованном интервале концентраций непрерывно увеличивается, а количество тантала сначала увеличивается до некоторого максимума, а затем уменьшается. Такое поведение металлов облегчает их разделение. В случае одной фтористоводородной кислоты (без соляной) максимум экстрагирования тантала достигается [c.450]

    Циклогексанон можно моноацилировать с выходом около 5Ю% при действии т/ ет-амилата натрия в бензоле в качестве каталюза-тора [381 при применении амида натрия в эфире выход составл яет 69% [391 наиболее высокие выходы обычно получают с трехфтоври-стым бором (401, [c.165]

    Для изготовления химической аппаратуры чаще всего применяют технический алюминий с чистотой порядка 99,5%. Из алюминия более высокой степени чистоты (99,90% и выше) изготавливают только аппараты и реакторы, контактирующие с концентрированной азотной кислотой. Его устойчивость в сухом броме, яблочной, борной и лимонной кислотах и в других средах выше, чем у технического алюминия, но практически это различие незначительно. В щавелевой, фосфорной и уксусной кислотах алюминий марок АОО, АДОО, АДО и АД1 имеет сходную коррозионную устойчивость. При получении уксусной, абиетиновой, масляной, капроновой и каприловой кислот, эти-ленбромида, амилового, метилового, этилового и бутилового спиртов, анизола, циклогексанона, крезола, фенола и др, в реакторах из алюминия необходимо иметь в виду, что он устойчив в пассивном состоянии только лишь при минимальном содержании влаги в среде. Применение алюминиевых сплавов, содержащих медь, для изготовления аппаратуры для производства уксусной кислоты недопустимо. Кремнисто-алюминиевые сплавы (силумины) пригодны для изготовления литых деталей насосов, работающих в среде уксусной кислоты. [c.125]

    Коразол впервые был получен в качестве побочного продукта при синтезе капролактама взаимодействием азотистой кислоты с циклогексаноном [I]. Один из возможных путей получения коразола (III) основан-на реакции циклогексанона (I) или его оксима (II) с азотистоводородной кислотой или ее солямц в присутствии минеральных кислот. Этот путь включает наиболее короткий и простой способ построения тетра-зольного кольца, и ему посвящено большое количество патентов. Разработан метод получения HI путем обработки азидом натрия продукта взаимодействия хлорсульфоновой кислоты с оксимом циклогексанона [2—4]. Выход III по этому методу 57%, считая на II. Однако применение ядовитой и взрывоопасной азотистоводородной кислоты затрудняет внедрение этого способа в производство.  [c.177]

    Ненасыщенные альдегиды табл. 1). Конденсация а,р-ненасыщенных альдегидов (акролеин, кротоновый альдегид, коричный альдегид) с соответствующими производными кнслот (122, 172—J 77] (эфиры малоновой и циануксусной кислот, этиловый эфир циклогексанон-2-карбоновой кислоты) приводит к образованию производных 8-альдегидокислот. Наличие алкильной группы в а-положснин, по-видимому, не оказывает отрицательного влияния на способность альдегидов вступать в конденсацию Михаэля с другой стороны, р-замещение изменяет течение реакции [172, 173]. (О дальнейшем применении продуктов конденсации для синтетических целей см. стр. 245.) [c.209]

    Из продукта взаимодействия этилового эфира циклогексанон-2-кар-боновой кислоты с азотистоводородной кислотой была получена после гидролиза а-аАНШопимелиновая кислота [15, 25]. Она является единственным продуктом реакции при применении в качестве катализатора концентрированной серной кислоты. Если, однако, в реакционной смеси присутствуют следы воды, а катализатором служит газообразный хлористый водород, то промежуточно образовавшийся лактам частично гидролизуется в а-аминопимелииовую кислоту, которая реагирует дальше, превращаясь в [c.302]

    Циклические кетоны реагируют нормально. 1,5-Циклопентаметн-лентетразол, образующийся при взаимодействии циклогексанона с азотистоводородной кислотой, нашел себе применение в качестве [c.304]

    Перекись водорода в разбавленной кислоте или в нейтральном растворе превращает иногда карбонильные соединения н нормальные продукты окисления, которые должны получиться по реакции Байера — Виллигера, однако чаще происходит образование оксигидроперекисей и продуктов их кояденсании. Простые и конденсированные перекиси XLH—XI.V получаются при действии псрскиси водорода в.растворе диэтилового эфира на циклогексанон [107, 15]. Подобные же соединения образуются в указанных условиях и из алифатических альдегидов [] 1] и ф луоренона [14], тогда как при применении надкислот полу--чаются без всяких затруднений нормальные продукты окисления, отвечающие реакции Байера — Виллигера. [c.96]

    Ф. из р-ров с фазовым распадом при охлаждении используют при получении волокон из полиолефинов (р-ритепи - высококипящие углеводороды), предложено также для волокон из полиакрилонитрила (смесь ДМФА с диметилсульфоном или мочевиной), поливинилового спирта (вода с мочевиной, капролактам). поливинилхлорида (капролактам или его смеси с циклогексаноном) и др. Ф. производится в шахте с охлаждением или в охладит, ванне. Волокна подвергают пластификац. вытягиванию. Р-ритель удаляют осторожной (напр., вакуумной) сушкой или промывкой легкотекучими жидкостями, смешивающимися с р-рителем полимера (во мн. случаях водой), с послед, сушкой. После этого,, при необходимости, проводят термич. вытягивание и термообработку. Практич. применение метод нашел при гель-формовании высокопрочных нитей на основе сверхвысокомол. полиэтилена. [c.122]

    К катализаторам основного типа относятся также оксиды редкоземельных элементов, находящие применение в качестве катализаторов самых различных реакщ1Й, в том числе и реакщ1Й окисления [377, 378]. Оксиды редкоземельных элементов, а также их фосфаты и соли карбоновых кислот применяют в реакциях неполного окисления метана [379, 380] и жидкофазного окисления циклогексанона в адипиновую кислоту [381]. В последнем случае при температуре 100 °С конверсия циклогексанона достигает 98% при селективности образования адипиновой кислоты 84%, те. исследованные катализаторы являются достаточно эффективными в данном процессе. [c.128]

    Водные растворы щелочи, а также формиаты щелочных и щелочноземельных металлов катализируют окисление альдегидов в кислоты [418,419]. Описано применение нафтената натрия в качестве катализатора жидкофазного окисления циклогексана в циклогексанол и циклогексанон [420], а щавелевую кислоту можно получать окислением угля в водном растворе щелочи [421]. Стеарат лития в жидкой фазе проводит окисление зтилбензола в 1-фенилэтилгидропероксид [422]. [c.131]

    Описано также применение палладиевых катализаторов для гидрирования фенола до циклогексанона в паровой фазе [7, 8] В частности в присутствии катализатора 0,5% Pd на AI2O3 при 140 °С и объемной скорости подачи водсрода 1500—3000 ч" в продуктах гидрирования фенола найдено 70% циклогексанона, 1% циклогексанола и 29% непрореагировавшего фенола [7]. [c.86]

    В схеме, представленной на рис 53, применен циркуляционный контур Реакционная смесь в этом случае циркулирует между реактором I ступени 7 и холодильниками 8, засасывается эжектором 9 и снова поступает в реактор В эжектор подается газообразный аммиак Аналогичный цикл предусматривается в первых по ходу реакторах П ступени 14 Для последующих реакторов необходимости в таком цикле нет, так как в них оксимируется суммарно лишь 1% от всего поступающего циклогексанона. Возможен также следующий прием раствор гидроксиламинсульфата предварительно концентрируется до содержания в нем (1 Н4)2304 и НгЗОл, обеспечивающих в дальнейшем удовлетворительное разделение водного и органического слоев в сепараторе. [c.154]

    Химизм процеоса ионообменной очистки не вполне ясен Можно твердо высказаться лишь в пользу того, что при ее применении из капролактама удаляются соединения кислого и основного характера, в первую очере21ь сульфат аммония, который в небольших концентрациях ( — 0,02%) все же присутствует в водном растворе капролактама Что касается таких примесей, как циклогексанон, циклогексанол, циклогексаноноксим и других органических соединений, то они проходят через эту стадию непревращенными Предположительно, на катионите протекают обменные реакцииам-фотерного электролиза На анионите улавливаются кислотный остаток сульфата и органические кислоты, в том числе е-аминокап-роновая Интересно, что даже в случае проскока на анионите продолжается сорбция окрашенных примесей, о чем свидетельствует снижение показателя окраски. [c.184]

    Фирма Union arbide (США) разработала и реализовала в промышленных условиях схему переработки циклогексанона в капролактам, исключающую стадии окоимирования и перегруппировки, т е те стадии, которые связаны с применением серной кислоты и олеума и образованием значительных количеств сульфата аммония Основу схемы составляют реакции пол учения капролактона и амидирования последнего в капролактам [c.230]

    Метилентрифенилфосфоран часто применяется для синтеза соединений с экзоциклическими метиленовыми группами. Из циклогексанона был получен метиленциклогексан с выходом 48% [41]. В стероидные соединения удалось ввести экзоцикли-ческие метиленовые группы в положения 3 [1, 34], 7 [19, 34], 12 [34] и 17 [34] и метиленовые группы в положения 20 [34], 24 [2, 19] и 25 [19]. Однако наиболее широкое применение реакция Виттига нашла в синтезах витамина О, а также природных полиенов и полиенов, представляющих интерес для изучения спектров поглощения. [c.103]


Смотреть страницы где упоминается термин Циклогексанон применение: [c.428]    [c.330]    [c.183]    [c.97]    [c.428]    [c.430]    [c.59]    [c.304]    [c.352]    [c.252]    [c.258]    [c.259]    [c.260]    [c.64]    [c.244]   
Начала органической химии Книга первая (1969) -- [ c.41 , c.555 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.38 , c.521 ]




ПОИСК





Смотрите так же термины и статьи:

Циклогексанон



© 2025 chem21.info Реклама на сайте