Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотная кислота влияние как катализатор при окислении

    Свинец—один из наиболее активных гетерогенных катализаторов. Опубликованы разные качественные характеристики этого каталитического процесса [134, 145, 146], а именно двухвалентный свинец в кислом растворе не оказывает никакого действия на перекись водорода для разложения ее требуется ш,елочная среда, в которой образуется двуокись свинца. В результате изучения [147] механизма этого катализа сделан вывод, что его можно описать как окислительно-восстановительный цикл между двухвалентным свинцом РЬ(ОН). и свинцовым суриком РЬзО . Условия высокой каталитической активности возникают тогда, когда оба эти веш,ества присутствуют как твердые фазы в сильнощелочном растворе образуются высшие окислы. Влияние различных интервалов pH можно охарактеризовать следующим образом. Азотнокислый свинец растворяется в перекиси водорода с образованием прозрачных устойчивых растворов. При добавке щелочи выпадает беловато-желтый осадок и возникает небольшая активность. При дальнейшей добавке щелочи осадок переходит в оранжево-красный и начинается бурное разложение перекиси. Как оказалось, количество щелочи, требующееся для достижения этой точки, обратно пропорционально количеству растворенного свинца на это явление накладывается еще четко не установленное влияние старения. Количество пирофосфата, требующееся для прекращения катализа, примерно эквивалентно количеству, необходимому для образования пирофосфорнокислого свинца РЬ Р О.. Каталитическая активность проходит через максимум приблизительно при 0,2 н. концентрации щелочи при более высокой концентрации возрастает растворимость свинца в виде плюмбита и плюмбата и каталитическая активность снижается. Сделана попытка [147] доказать наличие циклического процесса окисления— восстановления при помощи радиоактивных индикаторов, однако она закончилась неудачей в связи с тем, что даже в отсутствие нерекиси водорода происходит обмен между ионом двухвалентного свинца и двуокисью свинца в азотной кислоте (что соответствует литературным данны.м [148, 149]) и между плю.мби-том и плюмбатом в основном растворе (что противоречит опубликованным данным [149[). [c.401]


    Как правило, метан и его гомологи реагируют с кислородом в газовой фазе при температуре от 250° и выше, образуя наиболее устойчивые из всех возможных продуктов окисления, а именно спирты, альдегиды или кетоны, кислоты и окиси. В случае высших углеводородов всегда происходит разрыв углеродной цепи, и часто кислородсодержащие соединения с тем же числом атомов углерода, что и исходный углеводород, составляют небольшую долю общего количества полезных продуктов окисления. Из всех углеводородов наиболее трудно окисляется метан. При последовательном переходе от метана к бутану легкость окисления увеличивается. Давление благоприятствует увеличению выхода и несколько ограничивает степень окисления. Перед началом реакции обычно наблюдается индукционный период. Твердые катализаторы и присутствие водяного пара не оказывают большого влияния на течение процесса. В этом отношении следует отметить аналогию с парофазным нитрованием (гл. 6), причем важно подчеркнуть, что нитрование азотной кислотой всегда сопровождается окислением, протекающим в значительной степени. [c.69]

    В настоящее время нитропарафины получают из метана или природных газов, которые обрабатывают NOa (реагент радикального характера) или лучше (вследствие меньшего окисления) азотной кислотой при 400° в газовой фазе. Катализаторы не оказывают влияния, поэтому механизм реакции, по-видимому, радикальный ([390—392]. О нитровании додекана в жидкой фазе см. [393, 394], ср. также [395, 396])  [c.403]

    Зильберман, Суворов и Смолян [94] провели детальное псследование зависимости выхода адипиновой кислоты от условий окисления (концентрации азотной кислоты, влияния катализаторов, продолжительности окисления) и нашли в частности, что с уменьшением концентрации азотной кислоты падает выход адипиновой кислоты и увеличивается образование побочных глутаровой и янтарной кислот. [c.682]

    Чистая азотная кислота, свободная от окислов азота, инертна до тех пор, пока под влиянием индуцирующих веществ не начнется ее разложение до азотистой кислоты, являющейся катализатором окисления. С появлением азотистой кислоты начинается автокаталитический процесс, причем в роли катализаторов окисления начинают принимать участие и окислы азота. Реакцию можно представить следующим образом  [c.282]


    Изучалось влияние давления при окислении циклогексанола азотной кислотой без катализатора [19]. Заметного влияния на выход адипиновой кислоты давление не оказывает и его применение оправдано лишь улучшением условий для последующей абсорбции окислов азота, [c.103]

    Примеси родия оказывают активизирующее влияние и на другие катализаторы, как медь, никель, палладий и платину. Этим свойством пользуются в промышленности, и в качестве катализатора обычно применяют сплавы. Так, например, для окисления аммиака в азотную кислоту применяются катализаторные сетки из сплавов платины и 7% НЬ, а также сплава платины с 7% КИ и 4% Р(5. Такие сетки позволяют окислять большие количества аммиака с хорошим выходом [91]. [c.24]

    Работы, посвященные изучению влияния различных катализаторов на процесс окисления циклогексанола и других производных циклогексана азотной кислотой, были рассмотрены нами ранее .  [c.29]

    В рассматриваемой работе уделено большое внимание коррозии в условиях проведения процесса окисления и ее влиянию на сам процесс. При исследовании коррозии в азотной кислоте аустенито-вой хромоникелевой стали, стабилизированной титаном, было установлено, что присутствие адипиновой кислоты, а также глутаровой и янтарной кислот существенно снижает скорость коррозии (до 50%). Наоборот, в присутствии щавелевой кислоты скорость коррозии увеличивается. В случае применения медно-ванадиевого катализатора медь сама по себе не влияет на скорость коррозии, а в смеси с продуктами реакции оказывает некоторое ингибирующее действие, Другой компонент смешанного катализатора — ванадий — усиливает коррозию, причем скорость коррозии возрастает пропорционально увеличению его копцептрации. [c.178]

    Чтобы избежать образования взрывчатых смесей, на каждый моль азотной кислоты вводят по меньшей мере 2 моля углеводорода. Окисляющая парафин азотная кислота восстанавливается в окись азота, которую легко перевести обратно в НЫОд. В результате этого выход нитропроизводных парафинов, считая на прореагировавшую кислоту, может достигать 90%. Большинство из испытанных до сих пор катализаторов вызывают только ускорение реакции окисления. Повышение температуры увеличивает скорость нитрования, благоприятствует образованию первичных нитропроизводных за счет вторичных и третичных и повышает выход продуктов расщепления углеродного скелета. Следует указать на аналогию в отношении влияния температуры, которая существует между парофазным нитрованием и парофазным хлорированием парафинов (гл. 5). При постоянной продолжительности реакции кривая зависимости степени превращения от температуры проходит через максимум. При температурах ниже оптимальной происходит в значительной степени пиролиз нитропарафинов. Реакция нитрования парафинов весьма экзотермична, поэтому, чтобы предотвратить местные перегревы, которые могут вызвать процессы, не поддающиеся управлению, в промышленных условиях заданную температуру поддерживают с точностью 1 °. [c.91]

    Метод основан на извлечении соединений элемента из почвы, окислении марганца до марганцовой кислоты персульфатом аммония в присутствии азотнокислого серебра в качестве катализатора и измерении оптической плотности окрашенного в розово-фиолетовый цвет раствора. Мешающее влияние хлоридов устраняют выпариванием анализируемой вытяжки досуха с азотной и серной кислотами. С помощью фосфорной кислоты мешающее определению железо связывается в бесцветный комплекс. [c.251]

    Действие бол ьшинства катализаторов специфично. Специфичность каталитического действия выражается в том, что универсальных катализаторов, пригодных для ускорения любой химической реакции, нет. Каждая группа сходных реакций, а в ряде случаев одна определенная реакция ускоряется своими специфичными, наиболее активными для нее катализаторами. Со специфичностью каталитического действия связан избирательный катализ. Некоторые катализаторы избирательно увеличивают скорость одной реакции, не влияя заметно на скорость других реакций, возможных для тех же исходных веществ. Избирательное (иначе селективное) действие основано на различной активности катализатора по отношению к разным реакциям. Под влиянием катализатора могут меняться относительные скорости последовательных или параллельных промежуточных стадий суммарной реакции и тем самым может изменяться ее направление. Таким образом, избирательный катализ дает возможность изменять направление химических реакций, т. е. управлять им. Примером тонкой избирательности катализатора является процесс окисления аммиака в производстве азотной кислоты. Платиновый катализатор резко ускоряет основную реакцию окисления аммиака до окиси азота  [c.168]


    Для промышленной реализации метода произвидства адипиновой кислоты доокислением азотной кислотой продуктов воздушного окисления циклогексана необходимо было получить данные для выбора реакционной аппаратуры, обеспечивающей длительную непрерывную работу под давлением. Кроме того, требовалось выяснить вопросы коррозионной стойкости различных конструкционных материалов, а также установить влияние состава сырья и катализатора на основные параметры процесса, взаимную зависимость времени контакта реагентов и температуры на первой стадии доокисления и др. Для получения всех этих данных была создана опытная установка непрерывного действия производительностью 100 кг адипиновой кислоты в сутки. [c.187]

    Влияние кислотности раствора. При изучении каталитического действия растворов соляной, серной, азотной, фосфорной,муравьиной, уксусной, янтарной и щавелевой кислот на окисление иона двухвалентного железа молекулярным кислородом (для ГеЗОц) было нaf цeнo, что щавелевая и о-фосфорная кислоты образуют осадок В растворе РеЗО и тормозят процесс окисления,что связано с понижением онцентрация Ре " " в растворе [ 43].Соляная,серная,азотная и муравьиная кислоты Я небольших концентрациях оказывают депрессивное действие.Уксусная янтарная кислоты несколько ускоряют реакцию,а щавелевая и фосфорная кислоты являются очень активными катализаторами окисления,значительно увеличивая скорость реакции [44]. [c.19]

    Наиболее трудной задачей, которую Оствальд разрешил удовлетворительно, было устранение из процесса окисления аммиака вредных сопутствующих реакций. Усдовия, при которых полное или почти полное превращение аммиака в азотную кислоту, осуществляются. в главных чертах, были выяснены Оствальдом. Идя к этому выяснению, Оствальд допустил, что конечным продуктом реакции аммиака с кислородом воздуха при высокой температуре в присутствии катализатора является азот если же при этой реакции образуются высшие окислы азота, то, вероятно, это имеет место потому, что главная реакция проходит через РЯД образований прежде, чем наступит ее равновесие- Следовательно, окислы азота должны быть рассматриваемы, как промежуточные соединения. Если эта гипотеза правильна, то, для полного окисления аммиака в азотную кислоту, надо создать условия, благоприятствующие преимущественному прохождению промежуточных реакций, ведущих к образованию окислов азота. На замедление же хода главной реакции, при которой аммиак распадается на азот с образованием воды, должны иметь влияние скорость прохождения газовой смеси, определяющая более или менее продолжительное прикосновение газов с катализатором, а также свойства и температура катализатора. Главная реакция тем активнее будет, чем дальше будет продолжаться соприкосновение газов с каталитическим веществом и тем меньше будет образоваться азота, чем быс- Рее газы будут покидать катализатор. Это теоретическое осве- [c.127]

    Андрусов исследовал влияние температуры, времени контакта соотношения аммиак воздух в смеси, пропускаемой через платиновую сетку, на эту реакцию и рассчитал количество окиси азота, аммиака и азота в отходящих газах. По Андрусову разложение аммиака в отсутствие кислорода может являться одной из стадий реакции, поэтому он измерил скорость разложения аммиака на платиновом катализаторе в зависимости от температуры. Ему было известно, что образующаяся в реакции азотная кислота может взаимодействовать с неокисленным аммиаком для измерения скорости реакций он пропускал над платиновым катализатором смеси трех газов. Он высказал предположение, что при окислении аммиака происходит несколько химических реакций. [c.303]

    Большое влияние на скорость коррозии металлов азотной кислотой оказывает присутствие некоторых солей. Так, нитрит натрия заметно ускоряет скорость коррозии металлов HNO3. Это объясняется тем, что окисление HNO3 является автокаталитической реакцией, в которой роль катализатора играет образующаяся при восстановлении кислоты двуокись азота. При добавке нитрита натрия к HNO3 выделяется свободная азотистая кислота, разлагающаяся с выделением окиси азота и двуокиси азота. [c.233]

    Видоизменение свойств шерсти. Механическая обработка шерсти во влажном и нагретом состоянии способствует сцеплению или свойлачиванию волокон. Различные виды шерсти и других животных волокон могут сильно различаться по способности к свойлачиванию. В производстве фетра для шляп необходимая способность к свойлачиванию часто достигается путем окисления волокна в тщательно контролируемых условиях. В прошлом для этой цели применяли азотную кислоту, содержащую соли ртути в качестве катализатора, но в 1936 г. сделано открытие, что ядовитый раствор ртутной соли может быть заменен раствором нерекиси водорода, содерж ащим минеральную кислоту [28]. Окисляющее действие, по-видимому, состоит в присоединении кислорода к дисульфидным группам цистина шерсти [29] с последующим разрывом этих цистиновых мостиков в структуре белка [30]. Раньше считали [30], что перекись водорода и амииная или карбиминная группа волокна образуют фактически аддитивное соединение. Описано влияние такого рода обработки иа кроличий пух [31]. Сообщается также о видоизменении пуха ангорских кроликов путем последовательной обработки тиогликолятом натрия, пепсином и окислителем вроде перекиси водорода [32]. [c.487]

    Очень большое к.оШчество работ посвящено исследованию влияния различных катализаторов на процесс окисления циклогексанола, циклогексанона или их смесей азотной кислотой. [c.103]

    Гольдман с сотрудшкаш [81] изучал на опытной установке окисление циклогексанола различных сортов азотной кислотой в присутствии смешанного медно-ванадиевого катализатора. Была подтверждена целесообразность окисления циклогехссанола-сырца при повышенном давлении для получения адининовой кислоты. Установлено влияние кратности циркуляции роакх ионной смеск через реакгор на выход адипиновой кислоты, [c.109]

    В 1914—1916 гг. инженер И. И, Андреев с сотрудниками изучили влияние различных факторов (состава и формы катализаторов, каталитических ядов и др.) на процесс окисления аммиака и сделали его совершенным. На основе полученных данных ими был спроектирован и построен (в г. Юзовке, ныне г. Донецк) в 1917 г. первый в России азотнокислотный завод. На нем применялся новый способ выделения и очистки аммиака, получаемого при коксовании углей, а также контактные аппараты новой конструкции с большей площадью контакта. Процесс окисления аммиака производился на более активных (платино-иридиевых) катализаторах, а для сооружения поглотительных башен использовали кислотоупорный материал (гранит). Опыт работы этого завода сыграл исключительно большую роль в развитии советской и мировой азотной промышленности. В связи с бурным развитием производства синтетического аммиака вся мировая промышленность перешла на получение азотной кислоты путем окисления его. [c.74]

    Эмпирическая формула абиетиновой кислоты указывает на то, что в ее молекуле имеются две двойные связи или два дополнительных кольца. С перманганатом и галоидами кислота реагирует как ненасыщенное соединение , и тщательное изучение различных реакций присоединения точно установило присутствие в ее молекуле двух двойных связей. Присоединение двух молекул бромистого водорода было осуществлено Леви" , которому удалось также получить тетраоксиабиетиновую кислоту - , применяя окисление перманганатом в определенных условиях. Ружичка и Мейер выделили в подобных же условиях диоксикислоту. В присутствии платинового катализатора абиетиновая кислота легко присоединяет 1 моль водорода, более медленно образуя тетрагидропроизводное- . Молекулярная рефракция эфиров абиетиновой кислотыи отношение последней к надбензойной кислоте также указывают на присутствие двух двойных связей. Озон оказывает необычное действие, так как абиетиновая кислота образует триозонид, возможно, под влиянием дегидрирующего действия озона Строение двух продуктов окисления абиетиновой кислоты указывает на то, что одна, а возможно и обе двойные связи находятся в кольце И, несущем изопропильную группу. При окислении абиетиновой кислоты азотной кислотой в качестве одного из продуктов расщепления образуется тримеллитовая кислота Эта [c.57]

    Серия работ С. И. направлена на изучение физико-химических условий окисления сульфитов. Четыре эксиеримен-тальных исследования посвящены вопросам кинетики окисления сульфитов аммония (совместно с Д. Л. Цырлиным), калия и кальция (совместно с А. П. Белопольским) с применением и без применения катализаторов. Разработанный в результате лабораторных опытов способ получения сульфата аммония из сернистого ангидрида, воздуха, аммиака и водяного пара позволяет получать сухую соль непосредственно из газов и паров. С. И. изучено влияние различных физико-хиотческих факторов на окисление сульфитов аммония азотной кислотой и окислами азота и показана возможность получения сульфонитратов аммония окислением сз льфита аммония азотной кислотой (совместно с х -. М. Дубовицким [c.14]

    Еще в 1839 г. Ф. Кюльман обнаружил, что аммиак в смеси с воздухом в присутствии платины окисляется в оксид азота (II), который легко можно превратить в азотную кислоту. Углубленное изучение этой реакции В. Оствальдом позволило осуществить строительство завода синтетической азотной кислоты в 1909 г. в Германии, позже —в других странах. Производство было однако несовершенным. В 1914—1916 гг. инженер И. И. Андреев с сотрудниками изучили влияние различных факторов на процесс окисления аммиака и усовершенствовали его, применив более активный и устойчивый катализатор, а также очистку каменноугольного аммиака. Опыт работы построенного под их руководством в 1916—1917 гг. в пос. Юзовка (ныне г. Донецк) завода послужил основой для развития как советской, так, и мировой азотной промышленности. В настоящее время вырабатывается только синтетическая азотная кислота (окислением синтетического аммиака). [c.63]

    На стойкость углеводородов к окислению и на характер образующихся продуктов окисления оказывает влияние их строение. Наименее стойки ненасыщенные углеводороды нормального или разветвленного строения, особенно с несколькими ненасыщенными связями. Многие из этих продуктов легко окисляются на воздухе уже при комнатной температуре. Эти углеводороды очень реакционноспособны и легко взаимодействуют с кислотами, галоидами и другими химически активными веществами. Значительно более стойки к окислению насыщенные углеводороды парафинового ряд . Для их окисления необходимо повышение температуры, присутствие катализаторов или сильных окислителей. При наличии в цепи разветвлений с третичным углеродным атомом их стойкость к окислению повышается, а с четвертичным — понижается. Углеводороды нормального строения весьма стойки к воздействию таких окислителей, как азотная кислота. Из циклических углеводородов без боковых цепей ароматические лучше противостоят окислению, чем нафтеновые, которые в этом отношении примерно равноценны парафиновым углеводородам. Окисляемость циклических углеводородов возрастает по мере увеличения в молекуле числа колец. При наличии у циклических углеводородов боковых цепей, увеличении их числа и длины химическая стабильность ухудшается. Циклические углеводороды с боковыми цепями составляют основную массу товарных масел, получаемых из нефти. Наряду с парафиновыми углеводородами нормального и разветвленного строения они являются важной составной частью широко применяемых загустителей смазок — петролату-мов и церезинов. Поскольку групповой химический состав минеральных масел и твердых углеводородов существенно зависит от сырья и способа получения, от этих же факторов в свою очередь зависит и стойкость их к окислению. Подробно вопрос окисляемости углеводородов рассматривается в монографии Черножукова и Крейна [154]. [c.140]

    Существенное влияние на показатели нроцесса доокисления азотной кислотой оказывает применение катализатора. Литературные данные и результаты наших лабораторных опытов говорят о том, что наибольший эффект дает смешанный медно-ванадиевый катализатор. Эти данные были проверены на опытной установке. Окисление циклогексанола, полученного гидрированием фенола, проводилось в автоклавах с мешалками при атмосферном давлении и времени пребывания реакционной смеси в реакторе первой ступени 15 мин и в реакторе второй ступени — 45 мин. В присутствии катализатора 0,75% Си и 0,2% NH4V0з от веса цик.логексанола) выход адипиновой кислоты увеличивался от 1,18 кг/кг циклогексанола (без катализатора) до 1,26 кг1кг, а суммарный выход низших дикарбоновых кислот уменьшался с 0,18 до 0,05 кг/кг. Выделение газов из реактора первой ступени в присутствии катализатора увеличивалось, а выделение их Р13 реактора второй ступени оставалось неизменным. Следовательно, добавка катализатора, помимо увеличения выхода адипиновой кислоты и уменьшения выхода низших дикарбоновых кислот, приводит к ускорению первой стадии процесса доокисления. [c.200]

    Пионером отечественной азотпокислотпой промышленности является инженер Иван Иванович Андреев (родился в 1880 г., умер в 1919 г.). Еще в конце 1914 г. он выдвинул задачу получить азотную кислоту из аммиачных вод коксовых печей . И. И. Андреев исследовал реакцию окисления аммиака, изучил разнообразные катализаторы этой реакции и дал оценку их с производственной точки зрения он испытал влияние на течение реакции ядов, содержащихся в коксовом аммиаке, и сконструировал контактные аппараты для окисления аммиака. Он занимался также вопросами изготовления катализаторов для заводской установки и руководил изготовлением на Московском металло-ткацком заводе катализатора — сеток из сплава платины и иридия. [c.164]

    Опытами с мышьяковистым ангидридом, играющим роль яда при каталитическом окислении двуокиси серы с ванадиевыми катализаторами, найдено, что отравление влечет за собой уменьшение числа каталитически активных центров при данной температуое. С другой стороны, исследование влияния азота и железа на каталитическое поведение угля при окислении щавелевой кислоты [240] показало, что не обязательно все яды, как правило, должны адсорбироваться на наиболее активных каталитических участках. Кривая, полученная при отравлении этого катализатора цианистым калием, была иной, отличной от кривой, полученной с содержащим железо углем, но не содержащим азота. Амиловый спирт распределяется между каталитически активным и инак-тивным углеродом, продолжительность жизни у молекул спирта, отравляющих активный углерод, больше, чем у щавелевой кислоты. Цианистый калий и тио-цианат калия более легко адсорбировались на железо-углеродной поверхности, чем на поверхности железо—углерод—азот, хотя последняя каталитически более активна разница в продолжительности жизни иона циана на железо-углеродной поверхности и поверхности железо —углерод—азот была не так велика, как разница в продолжительности жизни тиоцианатного иона, который поэтому должен рассматриваться как более селективный яд. Остаточное сродство железо-углеродного комплекса для цианида и тиоцианида больше, чем сродство железо-углерод-азотного комплекса, однако каталитическая активность для окисления щавелевой кислоты гораздо меньше. [c.394]


Смотреть страницы где упоминается термин Азотная кислота влияние как катализатор при окислении: [c.263]    [c.89]    [c.23]    [c.359]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Азотная кислота, влияние на окисление

Катализаторы окисление кислотами



© 2025 chem21.info Реклама на сайте