Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорофилл и вода

    К числу наиболее важных природных хелатирующих агентов относятся производные порфина, молекула которого схематически изображена на рис. 23.6. Порфин может образовывать координационные связи с ионом металла, роль доноров при этом выполняют четыре атома азота. При комплексообразовании с металлом происходит замещение двух указанных на рисунке протонов, которые связаны с атомами азота. Комплексы, полученные с участием производных порфина, называк тся шорфи-ринами. Различные порфирины отличаются друг от друга входящими в них металлами и фуппами заместителей, присоединенными к атомам углерода на периферии лиганда. Двумя важнейшими порфиринами являются гем, который содержит атом желе-за(П), и хлорофилл, который содержит атом магния(П). О свойствах гема мы уже говорили в разд. 10.5, ч. 1. Молекула гемоглобина-переносчика кислорода в крови (рис. 10.10)-содержит четыре гемовые структурные единицы. В геме четыре атома азота порфиринового лиганда, а также атом азота, который принадлежит бе1сковой структуре молекулы гемоглобина, координированы атомом железа, который может координировать еще молекулу кислорода (в красной форме гемоглобина, называемой оксигемоглобином) либо молекулу воды (в синей форме гемоглобина, называемой де-зоксигемоглобином). Схематическое изображение оксигемоглобина дано на рис. 23.7. Как отмечалось в разд. 10.5, ч. 1, некоторые группы, например СО, действуют на гемоглобин как яды, поскольку они образуют с железом более прочные связи, чем О2. [c.376]


    Комплексные соединения широко распространены в природе, играют важную роль в биологических процессах. Достаточно упомянуть гемоглобин крови (комплексообразователь Ре +) и хлорофилл зеленых растений (комплексообразователь Mg + ), витамин В12 (комплексообразователь Со + ). Комплексные соединения и комп-лексообразование находят самое разнообразное практическое применение. Образование комплексов используется при умягчении жесткой воды и растворении камней в почках важнейшую роль играют комплексные соединения в химическом анализе, производстве металлов и т. д. [c.76]

    Действительно, общий цикл обмена веществом и энергией для живых организмов можно упрощенно представить как инициирующее этот цикл образование сложных молекул типа углеводов из СО2 и воды в ходе фотосинтеза растений с последующей деградацией продуктов фотосинтеза вновь до СО2 и воды в процессах дыхания в рассматриваемом организме. При этом уменьшение энтропии происходит только в момент электронного возбуждения молекулы хлорофилла за счет поглощения фотосинтезирующими организмами носителей чистой свободной энергии — квантов солнечного света, в результате чего становится возможным протекание первичных фотосинтетических реакций образования энергоемких веществ. Все происходящие далее биохимические процессы носят необратимый характер и идут только с увеличением [c.297]

    Эти два соединения, хлорофилл и гем, играют важнейшую роль в сложном механизме поглощения солнечной энергии и ее превращении для использования живыми организмами. Мы уже знаем, что характерным свойством комплексов переходных металлов является наличие нескольких близко расположенных -уровней, что позволяет им поглощать свет в видимой области спектра и придает окраску. Порфириновый цикл вокруг иона Mg в молекуле хлорофилла выполняет такую же роль. Хлорофилл в растениях поглощает фотоны видимого света и переходит в возбужденное электронное состояние (рис. 20-22). Эта энергия возбуждения может инициировать цепь химических реакций, приводящих в конце концов к образованию сахаров из диоксида углерода и воды  [c.255]

    Пиррол получают при сухой перегонке обезжиренных костей. Он представляет собой бесцветную жидкость, мало растворимую в воде. Как сам пиррол, так и его изомеры и продукты частичного восстановления входят в состав таких биологически важных соединений, как хлорофилл и гемоглобин. [c.420]


    Наконец, существует мнение, что вода разлагается в комплексе хлорофилл — вода, в котором она находится в виде недиссоциированных молекул [340]. [c.138]

    Фотосинтез— один из важнейших процессов в биосфере продуктом его являются практически все природные органические соединения. Под действием света, поглощаемого пигментом зеленых растений хлорофиллом, происходит в конечном итоге образование глюкозы СвН 20д и кислорода из диоксида углерода и воды. Согласно полному уравнению фотосинтеза [c.32]

    Другие зависимости обнаружены для водно-органических растворов хлорофилла вода способствует агрегации хлорофилла, как и многих других соединений с большой системой сопряженных [c.15]

    Минеральная (зольная) часть привносится в нефть, главным образом, вместе с пластовыми водами в виде растворимых солей и нерастворимых веществ (песка и глины). В наименьшей степени зольная часть имеет органическое происхождение. Это металлорганические соединения (титана, ванадия, никеля и др.), происхождение которых обычно связывают с генезисом нефти, с содержанием в ней металло-порфириновых комплексов, которые являются конечным продуктом разложения хлорофилла, гемоглобина и гемина исходного материнского вещества нефтей. [c.36]

    Напротив, соединение большой группы (200—250) молекул хлорофилла с одним центром фотохимической реакции обеспечивает его непрерывную работу, подобно тому, как присоединение одного водостока к достаточно значительной поверхности крыши позволяет получить из отдельных капель непрерывный поток воды. Ясно, что при этом вся масса молекул хлорофилла активно участвует в полез- [c.178]

    Участником этой реакции является хлорофилл — сложное органическое соединение, придающее растениям зеленый цвет. В этой реакции хлорофилл является сенсибилизатором. Под действием света он активируется, а затем содействует взаимодействию молекул диоксида углерода и воды. Для этой реакции 7 0,1. [c.314]

    Действительный механизм фотосинтеза чрезвычайно сложен, Протекает процесс только в присутствии хлорофилла, который поглощает красные, синие и в меньшей степени зеленые лучи. Активированный таким образом хлорофилл содействует образованию из диоксида углерода и воды углеводов, необходимых для роста растений, и кислорода. Хлорофилл переводит лучистую энергию в химическую, т. е. является фотосенсибилизатором. [c.291]

    Органические соединения в природе образуются в процессе фотосинтеза из диоксида углерода и воды. Этот процесс протекает в зеленых растениях под действием солнечного излучения, поглощаемого хлорофиллом. В результате фотосинтеза возникли и ископаемые источники энергии, и химическое сырье, т. е. уголь, нефть и природный газ. Однако органические соединения должны были существовать на Земле и до возникновения жизни, которая не могла появиться без них. Так как в первичной земной атмосфере присутствовали прежде всего водород и вода, а также оксид углерода, азот, аммиак и метан, а кислорода не было, то еще около 2 млрд. лет назад она имела восстановительный характер и в существовавших условиях (сильное радиоактивное излучение земных минералов и интенсивные атмосферные разряды) в ней могли протекать реакции типа [c.9]

    Лишенный одного электрона хлорофилл стремится получить его обратно и тем самым является сильным окислителем, который может окислить кислород воды до свободного кислорода [c.288]

    Важным примером делокализации и поглощения энергии является хлорофилл, который обсуждался в послесловии к гл. 20. Ароматическое кольцо, окружающее ион Mg , представляет собой протяженную делокализо-ванную систему, образуемую порфирином (см. рис. 20-19). Электронные энергетические уровни этой системы обусловливают поглощение света с одним максимумом в фиолетовой области, при 430 нм, и вторым максимумом в красной области, при 690 нм (см. рис. 20-22). При поглощении света молекулой хлорофилла ее электрон возбуждается на более высокий уровень это позволяет хлорофиллу восстанавливать ионы Ге " в ферре-доксине, белке с молекулярной массой 13000, который содержит два атома железа, координированные к сере. Последующее окисление ферредоксина служит источником энергии для протекания других реакций, которые в конце концов приводят к расщеплению воды, восстановлению диоксида углерода и, наконец, к синтезу глюкозы, С НиОв. [c.307]

    Для образования одной молекулы глюкозы, согласно этому уравнению, 24 раза должно произойти поглощение света хлорофиллом, и каждый раз хлорофилл отдает свой возбужденный электрон на восстановление СОг. Отдав свой электрон, хлорофилл приобретает свойства окислителя и стремится получить электрон обратно. Получает он электрон от молекулы воды с помощью сложной цепочки реакций, рассматриваемых в специальных курсах биохимии. Итоговое уравнение этой цепочки можно записать [c.370]


    Основным исходным материалом для химических превращений в клетке являются углеводы, которые образуются при фотосинтезе (при реакции, протекающей в зеленых растениях в присутствии хлорофилла) из СО2 и воды. Эти вещества подвергаются химическим превращениям как в самих растениях, так и в организмах травоядных и плотоядных животных, куда они поступают в виде пищи. Эти биохимические явления называются метаболическими процессами. Метаболические процессы приводят к появлению необходимых для организма соединений и снабжают организм энергией. Протекание этих процессов часто исследуется с помощью меченых соединений, т. е. соединений, содержащих радиоактивные изотопы Н, С, [c.180]

    Вторая эпоха характеризовалась отсутствием избытка свободного водорода и началом медленного нарастания (в результате радиолиза воды) концентрации свободного кислорода, а также последующего появления в высоких слоях земной газовой оболочки вначале слабого, но все же поглощающего самые короткие ультрафиолетовые волны озонного панцыря последний начал предохранять земную поверхность от стерилизации. Б связи с этим ультрафиолетовая фотохимия постепенно начала вытесняться на земной поверхности фотохимическими реакциями синтеза под действием видимого света с его более длинными волнами. Окрашенные пигменты (хлорофилл, гемоглобин, гемоцианин), имеющие в молекулярном скелете порфириновую группировку из четырех пятичленных пиррольных колец с атомами Mg, Ре, Со и Си, в их центре рождались теперь в воде океана и смогли наравне с другими сложными органическими молекулами сохранять свое существование, тогда как раньше короткий ультрафиолет разложил бы их на осколки так же, как он стерилизовал все живое. [c.375]

    Хлорирование 453 Хлористая кислота 40, 343 Хлорметан 453 Хлорная вода 343 Хлорная кислота 40, 343 Хлорноватая кислота 40, Хлорноватистая кислота 40, Хлороводород 330, 346 Хлороводородная кислота 39, 346 Хлоропрен 676 Хлорофилл 258 [c.711]

    Таким образом находясь в атмосфере, содержащей аммиак и азот, бактерии, а позже и растения, содержащие хлорофилл, должны были создать в ходе эволюции разнообразные АС, например белки, алкалоиды п др., входящие в состав растений и животных. Поскольку происхождение нефти связано в превращениями захороненного органического материала, разнообразные трансформированные АС в тех или иных количествах должны присутствовать в нефти. Их количество, состав и структура зависят от условий нефтеобразования — времени, температуры, исходного вещества, геологического окружения, деятельности бактерий, состава вод и др. Составы исходного (древнего) и современного органического материала примерно одинаковы и очень разнообразны. Поэтому кажется удивительным и до конца непонятным относительно однообразное и в целом сходное распределение АС в нефтях различного возраста и происхождения. В сущности АС могут либо быть трансформированными химическими ископаемыми, либо являться продуктом вторичных превращений азотсодержащих компонентов осажденного органического материала. Поэтому важно рассмотреть в общих чертах состав исходного органического материала и возможные пути его превращения в АС нефти. [c.61]

    Растения обычно содержат вместе два вида красящих веществ -келтое — ксантофилл и зеленое — хлорофилл. Эти вещества нерастворимы в воде, но при экстрагировании водой растений, содер- кащих хлорофилл, вода растворяет находящиеся в нем минеральные соли, вследствие чего изменяется коллоидальное состояние хлорофилла и он становится растворим. Для удаления хлорофилла из растений был применен метод Вильштеттера — экстрагирование его 80% ацетоном в аппарате Сокслета. Для освобождения от желтого красящего вещества растение быстро встряхивается с чистым ацетоном, после чего хлорофилл экстрагируется 80 % ацетоном. Хлорофилл представляет собой порошок темнозеленого цвета, нерастворимый в воде. [c.63]

    Это тем более верно, что в ряде работ [350, 354] отмечалась активизирующая роль атома металла, особенно Mg, при ком плекоообразовании хлорофилла водой. [c.144]

    Световая энергия, поглощенная хлорофиллом, используется как движущая сила реакции, которая самопроизвольно протекать не может,-восстановления НАДФ с использованием воды в качестве восстановителя  [c.336]

    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Крахмал. Крахмал является важнейшим резервным углеводом растений. Он образуется из углекислоты, усваиваемой растениями с помощью хлорофилла, и попадает затем в различные части растения, где используется в качестве строительного вещества. В периоды сильной ассимиляции он откладывается в корнях, клубнях и семенах (особенно обильно, например, в картофеле и семенах хлебных злаков). В холодной воде крахмал почти совсем не растворим, но горячая вода растворяет его в значительной степени, причем образуется вязкий раствор, не восстанавливающий фелингову жидкость и при охлаждении застывающий в студнеобразную массу (крахмальный клейстер). Природный крахмал всегда содержит немного фосфора, количество которого в разных видах бывает различным (0,02—0,16%). Этот фосфор, по-видимому, имеет значение для энзиматического распада крахмала. Из продуктов гидролиза картофельного крахмала была выделена глюкозо-6-фосфорная кислота. На основании исследований Макэнна различают две фракции крахмала амилозу и а м и л о-пектин (вещество оболочки). Первая растворяется в воде без образования клейстера и окрашивается иодом в чисто-синий цвет. Амило-пектин, наоборот, с горячей водой образует клейстер и от иода приобретает фиолетовую окраску. Отделение амилопектина может быть осуществлено путем извлечения щелочами или посредством электродиализа отделение амилозы достигается осаждением различными органическими веществами — спиртами (например, амиловым), сложными эфирами, кетонами, меркаптанами, парафинами. [c.454]

    В зеленом листе растения под воздействием солнечной радиации протекает целый комплекс фотохимических процессов, в результате которых из воды, углекислого газа и минеральных солей образуются крахмал, клетчатка, белки, жиры и другие сложные органические вещества. Процесс фотосинтеза о гень сложен. Он осуществляется при непосредственном участии важнейшего природного фотокатализатора — хлорофилла и сопровождается целым циклом химических превращений, не зависящих от солнечной радиации. В этих превращениях участвует большое число разнообразных биокатализаторов— ферментов. Суммарное уравнение фотосинтеза обычно выражают в виде реакции превращения двуокиси углерода и воды в гексозу  [c.176]

    Далее молекула хлорофилла, присоединяя атом водорода, восстанавливается. Радикалы ОН, соединяясь попарно, образуют молекулу пероксида водорода Н2О2, которая как непрочное соединение распадается на воду и кислород  [c.177]

    Диоксвд углерода содержится в воздухе (0,03 об. %) и в минеральных водах. Диоксид углерода ассимилируется зелеными растениями при фотосинтезе (с помощью содержащегося в растениях хлорофилла под воздействием солнечных лучей). При этом в растениях образуются органические вещества (глюкоза и др.), а кислород выделяется в атмосферу. Глюкоза в организмах животных и растений диссимили-руется, т. е. окисляется под действием кислорода в присутст- [c.151]

    В природе железо находится в связанном виде входит в состав горных пород, природных вод и вод некоторых минеральных источников, содержится в живых организмах. Р астения при недостатке железа не образуют хлорофилла н теряют возможность ассимилировать СО2 из воздуха. У животных и человека железо - действующее начало гемо-глобрша - переносчика кислорода от органов дыхания к тканям соединениями железа являются многие ферменты и белки. В организме взрослого человека содержится 4-5 г железа. [c.191]

    Фосфор — один из важных элементов для живых организмов. Тело человека в среднем возрасте содержит около 1600 г фосфора в пересчете на оксид фосфора РаОв, в том числе около 1400 г в костях, 130 г в тканях мышц, 12 г в мозге, 10 г в печени, 6 г в легких, 44 г в крови. Без фосфора невозможно образование хлорофилла и усвоение растениями углекислого газа. Признаки недостатка фосфора в растениях темно-зеленая, голубоватая, тусклая окраска листьев с появлением при отмирании черных пятен, задержка фаз развития растений (цветения и созревания), угнетенный рост, утолщение клеточных стенок. Поэтому фосфор входит в состав ферментов, витаминов, внесение фосфорных удобрений в почву не только повышает урожай, но и улучшает качество продуктов. Начало промышленному производству фосфорных удобрений положено работами Ю, Либиха. Он предложил превращать нерастворимый в воде фосфат кальция действием серной кислоты в водорастворимый, легкоусвояемый растениями дигидрофосфат кальция. Первоначально сырьем для его получения служили кости животных, но уже в 1857 г. Ю. Либих показал, что столь же хорошее удобрение получается при обработке серной кислотой минеральных фосфатов. [c.161]

    Магний среди металлов занимает особое место. Его плотность (1,729 г/см ) на /з меньше плотности алюминия, а прочность почти в 2 раза выше. Эти качества обеспечивают сплавам на основе магния ведущее место в авиастроении. Магний — серебристо-белый металл, довольно тягуч и может быть прокатан в тонкие листы. В природе магний широко распространен в виде соединений (восьмое место по содержанию в земной коре, или 1,87% по массе). Он имеет три стабильных изотопа Mg (78,60%), (10,11%), (11,29%). Основные минералы — магнезит Mg Oз, доломит МеСОзХ X СаСОз. Запасы их практически неисчерпаемы. В состав основных пород входят многие силикаты магния оливин, тальк, асбест и др. В гидросфере содержатся колоссальные запасы растворенных солей магния (уже сейчас магний добывают из морской воды). Зеленый пигмент растений — хлорофилл содержит 2,7% Мё. [c.147]

    В клетках растений, обязательно в присутствии хлорофилла (как катализатора), оксид углерода (IV) взаимодействует с водородом воды и другими веществами, образуются сложные органические соединения — белки, з-глеводы и жиры. Этот процесс происходит только при поглощении энергии солнечного света. Поэтому он называется фотосинтезом. [c.319]

    Показано также, что молекулы хлорофилла своей длинной фитольной цепью погружены в несмешивающуюся с водой липидную фазу, а порфириновое кольцо расположено в водной среде. В природных условиях найдено уже несколько вариаций молекул хлорофилла некоторые из них удалось синтезировать и искусственно. [c.339]

    Нахождение в природе. Хлор в природе в свободном состоянии практически не встречается. Широко распространены его соединения каменная соль Na l, сильвинит K l-Na l и карналлит K l-Mg b. Большое количество хлоридов содержится в морской воде. Хлор входит в состав зеленого вещества-растений— хлорофилла. [c.343]

    Как правило, типичные хелаты лучше растворимы в органических растворителях, чем в воде. Их водные растворы показывают ничтожную электропроводность. По отношению к различным реактивам внутрикомилексные соединеггия большей частью весьма устойчивы (наиример, из раствора глицииата меди последняя не осаждается сероводородом). К их числу относятся, в частности, такие важные для жизни вещества, как хлорофилл и гемоглобин. [c.462]


Смотреть страницы где упоминается термин Хлорофилл и вода: [c.455]    [c.97]    [c.45]    [c.147]    [c.195]    [c.270]    [c.55]    [c.258]    [c.208]    [c.212]   
Смотреть главы в:

Фотосинтез 1951 -> Хлорофилл и вода




ПОИСК





Смотрите так же термины и статьи:

Контроль качества воды и изучение распределения хлорофилла в природе

Первичный фотохимический процесс от хлорофилла к воде

Пресные воды хлорофилла уровни

Состояние воды в хлорофилле

Хлорофилл

Хлорофилл дипольный с водой

Хлорофилл как акцептор для воды и двуокиси углерода в фотосинтезе

Хлорофилл содержание воды

Хлорофилл хлорофилл

Энергия водородной связи воды в хлорофилле



© 2025 chem21.info Реклама на сайте