Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесные и неравновесные потенциалы

    Неравновесный электродный потенциал при достижении стационарности процесса может оказаться, подобно равновесному электродному потенциалу, практически независящим от времени. Это установившееся значение потенциала электрода под током называется стационарным потенциалом - [c.277]

    Неравновесный потенциал полуволны сильно сдвинут в отрицательную сторону по сравнению с равновесным значением 1/,. Этот сдвиг равен перенапряжению процесса. [c.262]


    При написании книги мы столкнулись с рядом терминологических трудностей. В отличие от ионометрии, терминология оксредметрии давно не обсуждалась, поэтому использованная в разделе III. 1 классификация (равновесная, неравновесная и косвенная оксредметрия), отказ от применения термина окислительный потенциал и символе н в-тех случаях, когда обратимость электродных реакций отсутствует или вызывает сомнения, следует рассматривать как наши предложения по этим вопросам. [c.6]

    В работе [56] вычисление поверхностного потенциала воды проводилось методом разложения в ряд по энергиям мультиплетного взаимодействия. Результаты расчета применительно к границе раздела вода I газовая фаза показывают, что молекулы воды должны ориентироваться атомами кислорода в сторону газовой фазы, причем знак существенно зависит от зарядовой конфигурации полярной молекулы. К аналогичным выводам приводят также исследования зависимости поверхностного потенциала струи воды в воздухе от времени жизни поверхности [57]. При возрасте поверхности менее 3 мкс измерение указывает на отклонение от состояния равновесия. В неравновесной области поверхностный потенциал со временем становится положительным и, считая, что для свежей поверхности при т = О (т - время жизни струи) вследствие отсутствия молекулярной ориентации в поверхностном слое = О, то равновесное значение потенциала на границе вода I газовая фаза должно быть положительным. Линейная экстраполяция в области т от 0,003 до О секунд [c.211]

    Здесь Ф = Ф—Фо — разность неравновесного и равновесного термодинамического потенциала и аналогично для V и 5. [c.167]

    Так как система, в которой протекают (и могут протекать) только равновесные процессы, бесконечно близка к равновесию, то сформулированные свойства изохорного потенциала позволяют судить о том, находится ли данная система в равновесии или нет. В последнем случае направление неравновесного процесса определяется убылью изохорного потенциала при постоянных температуре и объеме системы. [c.116]

    Изобарный потенциал системы при постоянных р и Т уменьшается прн неравновесных процессах и остается постоянным при равновесных процессах. Очевидно, равновесное состояние системы при данных р и Т соответствует минимуму изобарного потенциала. Таким образом, условием равновесия системы при постоянных р и Т является  [c.119]

    Рекомбинация на молекуле водорода рассматривалась также в [141], где аналогично потенциал взаимодействия описывается функцией Морзе для основного состояния Hj, а взаимодействие каждого из атомов Н с молекулой Нз в основном колебательном состоянии — функцией Морзе для равновесного расстояния R = 3,4-10 мкм и глубины ямы е/к = 38 К. Коэффициент перевала оказался равным 0,4, а пределы изменения коэффициента поправки на неравновесность — от 0,4 (при 80 К) до 0,3 (при 1000 К). Проведен учет возможного взаимодействия радикала Н со стабильным комплексом Нз и вк.лада этого взаимодействия в общую скорость реакции (рис. ОД). [c.264]


    Переход электрохимической системы 1юд действием внешнего тока из равновесного состояния в неравновесное сопровождается изменением величины электродного потенциала. Это явление, а также разность между потенциалом ф электрода под током и равновесным потенциалом фр в том же электролите называется электродной поляризацией т)  [c.498]

    Электрохимические цепи строго равновесны лишь тогда, когда они не содержат границы двух различных растворов. На такой границе происходят неравновесные процессы диффузии и возникает диффузионный потенциал (см. гл. IV). Тем не менее для многих химических реакций такой границы избежать не удается. Так, например, при реализации электрохимического механизма реакции [c.111]

    С повышением частоты переменного тока пики иа С, /г-кривых в присутствии органических соединений падают по высоте. Это связано с тем, что процессы адсорбции — десорбции не успевают за колебаниями потенциала. Как впервые показано в работах В. И. Мелик-Гайказяна и А. И. Фрумкина, для большинства органических соединений наиболее медленной стадией в общем процессе адсорбции на ртути является диффузия. В случае формирования на электроде особо прочных адсорбционных слоев наряду с замедленностью диффузии сказывается замедленность стадии формирования адсорбционного слоя. Таким образом, при высоких частотах или при низких концентрациях органического вещества, когда процесс адсорбции протекает относительно медленно, С, -кривые становятся неравновесными. Равновесность С, -кривых может быть установлена путем расче- [c.178]

    Потенциал электрода ф под током не равен равновесному электродному потенциалу, а поэтому и значение напряжения отличается от обратимого значения ЭДС. Величины ср и Е зависят не только от природы системы, ее температуры и давления, но и от силы тока. Таким образом, для неравновесной электрохимической цепи должна существовать определенная связь между силой тока и значением ЭДС. [c.201]

    Релаксацией называется процесс постепенного перехода физической системы пз некоторого неравновесного состояния, вызванного внешними причинами, в равновесное. В рассматриваемом случае под релаксацией понимают выравнивание с помощью диффузии неравномерного распределения концентрации реагирующих веществ у поверхности электрода, которое возникло в результате резкого отклонения электрохимической системы от равновесного состояния. Таким образом, в релаксационных методах изучения электрохимической кинетики наблюдают поведение электрода в течение весьма короткого промежутка времени (10- — ю-4 с) после отклонения от равновесных условий вследствие резкого изменения потенциала электрода или величины тока в цепи. [c.22]

    Если системы (13,2) и (13.3) объединить в одну,соединив цинковую и медную пластины металлическим проводником с электронной проводимостью, а растворы гпЗО и СиЗО —электролитическим проводником с ионной проводимостью, то получится замкнутая неравновесная система— гальванический элемент, схема которого приведена на рис. 13.1. Поскольку потенциалы электродов различны, по соединяющему их металлическому проводнику (II) перемещается поток электронов—электрический ток. Для восстановления равновесного потенциала цинкового электрода цинк должен переходить в раствор. Увеличение же отрицательности потенциала медного электрода за счет переместившихся электронов повлечет разрядку части ионов и выделение из раствора металлической меди на медном электроде. В результате около цинкового электрода электролит приобретает избыточное число положительно заряженных ионов по сравнению с исходным, а около медного электрода образуется недостаток ионов 50 -. Результатом различия заряда ионных растворов будет ионный [c.141]

    Гл. 5—7 посвящены обобщению классической термодинамической теории устойчивости на равновесные и неравновесные условия. Интересно отметить, что даже для равновесных условий область применимости классической теории была ограничена несколькими случаями, в которых существует минимум термодинамического потенциала (например, система данного объема и с заданной температурой). Однако во многих задачах определены именно граничные условия, а не значения некоторых термодинамических переменных внутри системы. Как правило, минимум термодинамического потенциала тогда не достигается, и поэтому мы должны развить новый подход к проблеме устойчивости (гл. 5), который мог бы быть затем применен и к неравновесным явлениям. Как уже отмечалось, основной результат этого подхода — введение так называемого производства избыточной энтропии. Знак этой величины непосредственно связан с устойчивостью неравновесного процесса по отношению к флуктуациям. [c.13]


    Уравнения баланса для массы, импульса и энергии, выведенные в этой главе, неоднократно будут использованы в дальнейшем изложении. В гл. 2 с их помощью будут получены точные выражения для потока и производства энтропии, которые входят в уравнение баланса энтропии. В гл. 7 они играют существенную роль при выяснении условий устойчивости равновесных и неравновесных процессов. Наконец, в гл. 9 и 10 эти уравнения понадобятся для формулировки критерия эволюции и введения понятия локального потенциала. [c.27]

    Особенность методов электрохимического анализа состоит в том, что в анализируемую систему не вводятся какие-либо химические реагенты, а используются процессы, связанные с переносом электрических зарядов. При этом аналитический сигнал зависит от одного или нескольких физических параметров равновесного или неравновесного электродного потенциала, потенциала окисления или восстановления, скорости массопереноса вещества в зону реакции на электроде, тока электролиза или количества электричества, пошедшего на него, электропроводности, емкости двойного электрического слоя и др. Природа сигнала, который измеряют соответствующим прибором, и определяет название метода. [c.9]

    Соотношения (101) и (102) справедливы только для систем, состояние которых мало отличается от равновесного, т. е. для систем в так называемой линейной области неравновесной термодинамики. Однако эта область охватывает широкий круг явлений, описываемых линейными законами Фурье для теплопроводности. Ома для электричества, Фика для диффузии и т. д. С помощью этих соотношений могут быть легко выведены основные соотношения для таких перекрестных явлений, как термодиффузия (появление градиента концентрации в первоначально гомогенной среде под влиянием градиента температур), термоэлектрический потенциал (возникновение электрического потенциала под действием градиента температур), диффузионный термоэффект (появление температурного градиента в результате диффузии газа), эффекты, обратные перечисленным, и т. д. [c.321]

    Феноменологические соотношения, определенные в подразделе 1.1, играют важную роль в термодинамике необратимых процессов. Общую основу макроскопического описания необратимых процессов составляет неравновесная термодинамика, которая строится как теория сплошной среды и параметры которой, в отличие от равновесной термодинамики, являются функциями пространственных координат и времени. Центральное место в неравновесной термодинамике играет уравнение баланса энтропии [10]. Это уравнение выражает тот факт, что энтропия некоторого элемента объема сплошной среды изменяется со временем за счет потока энтропии в рассматриваемый объем извне и за счет положительного источника энтропии, обусловленного необходимыми процессами внутри объема. При обратимых процессах источники энтропии отсутствуют. В этом состоит локальная формулировка второго закона термодинамики. Поэтому основной задачей в теории необратимых процессов является получение выражения для источника энтропии. Для этого необходимо использовать законы сохранения массы, количества движения и энергии в дифференциальной форме, полученные в разделе 1. В уравнения сохранения входят потоки диффузии, тепла и тензор напряжений, которые характеризуют перенос массы, энергии и импульса. Важную роль играет термодинамическое уравнение Гиббса (5.49), которое связывает скорость изменения энтропии со скоростями изменения энергии и состава смеси. Оказывается, что выражение для интенсивности источника энтропии представляет собой сумму членов, каждый из которых является произведением потока, характеризующего необратимый процесс, и величины, называемой термодинамической силой. Термодинамическая сила связана с неоднородностью системы или с отклонением параметра от его равновесного значения. Потоки, в свою очередь, в первом приближении линейно зависят от термодинамических сил в соответствии с феноменологическими соотношениями. Эти линейные законы отражают зависимость потока от всех термодинамических сил, т. е. учитывают перекрестные эффекты. Так, поток вещества зависит не только от градиента концентрации, но и от градиентов давления, температуры, электрического потенциала и т. д. Неравновесная термодинамика ограничивается в основном изучением линейных феноменологических соотношений. [c.83]

    Для ряда электродов необходимо знать не равновесные, а компромиссные значения бестоковых потенциалов, что обусловлено протеканием на неполяризованном электроде сопряженных электрохимических реакций. Значительная разница между компромиссными и равновесными значениями потенциала характерна, например, для пассивирующихся металлов (Mg, А1, Ti). Равновесный потенциал не достигается на кислородном, гидра-зиновом, метанольном электродах. Неравновесным является и оксидно-марганцевый электрод. [c.44]

    НЕОБРАТИМЫЕ ЭЛЕКТРОДНЫЕ ПРОЦЕССЫ, наблюдаются в тех случаях, когда скорость превращения в-ва на электроде определяется только скоростью электрохим. р-ции переноса заряда в прямом направлении (см. Электрохимическая кинетика). Характеризуются высоким перенапряжением т и низкой константой скорости ks] нри зтом чем меньше ks и больше ц, тем существеннее необратимость процесса. Обычно на практике необратимость зависит от соотношения значений ks и скорости v массопереноса в-ва к электроду. При ks v отношение концентраций окисленной Со и восстановленной ся форм в-ва на пов-сти электрода описывается ур-нием Нернста (см. Электродный потенциал). При этом эначение электродного потенциала Ф близко к равновесному, т) г О, и процесс практически обратим. При ks v значения Со и Ся отличаются от значений, к-рые подчиняются ур-нию Нернста, электрод приобретает неравновесный потенциал, Т] велико, и процесс необратим. При ks v значение Т] мало, и электродные процессы квазинеобратимы. При Н. э. п. энтропия S системы возрастает, причем её прирост rf S за время at равен гт /Т, где i — сила тока, пропускаемого через электрод, Т — абс. т-ра. [c.372]

    Вот почему термодинамические потенциалы, обладающие экстремальными свойствами (энтропия 3, свободные энергии Гельмгольца Г и Гиббса О), а также химический потенциал л в том виде, как они определены выше, являются потенциалами для процессов равновесных (ква-зиравновесных). Для процессов слабонеравновесных и умеренно неравновесных они сохраняют свойства экстремальности, но должны строиться по-другому, и, строго говоря, становятся псевдопотенциалами, а для процессов сильно неравновесных они утрачивают свойства локальной экстремальности вообще. [c.103]

    В подходе используется обычное предположение о том, что вероятности перехода в неравновесном состоянии таковы же, как и в состоянии равновесия. Физическая модель процесса имеет следующий вид после столкновения молекулы с третьим телом и образования активированного комплекса начинается быстрая релаксация с выравпиванием заселенностей по уровням, приводящая к почти больцмановскому распределению. Весь этот период система находится в квазистационарпом состоянии и для нее справедливо обычное соотношение феноменологического закона действия масс /Срек//Сд с = отя индивидуальные коэффициенты скорости /сре , /сд о могут отличаться и быть ниже равновесных. Потенциал взаимодействия описывается функцией Морзе. Уравнение для скорости реакции [c.263]

    Второй метод основан на изучении зависимости твердости электрода от его потенциала. Этот метод был разработан П. А. Ребиндером и Е. К. Венстрем. Твердость, по определению Ребиндера,— это сопротивляемость тела прилагаемой упругой или пластичной деформации. Чем больше твердость тела, тем труднее происходит его разрушение. При разрушении твердого тела увеличивается его площадь поверхности. Работа увеличения плбщади поверхности в равновесных условиях — это обратимая поверхностная работа с. Следовательно, должна наблюдаться симбатность хода а, -кривых и кривых зависимости твердости от потенциала. Однако однозначной количественной связи между твердостью и поверхностной работой не существует, так как процесс увеличения поверхности твердого тела при его разрушении практически идет в неравновесных условиях. Для определения зависимости твердости от потенциала был использован метод маятника. На пластинку (рис, 24) из исследуемого металла устанавливают коромыело с прикрепленной к нему в центре опорой. На концах коромысла укрепляются равные по величине грузы. Опора заканчивается двумя маленькими шариками (или остриями) из достаточно твердого материала (более твердого, чем исследуемый металл, например из карбида вольфрама). Два шарика необходимы для того, чтобы колебания коро- [c.47]

    Второй метод основан на изучении зависимости твердости электрода от его потенциала. Этот метод был разработан П. А. Ребиндером и Е. К. Венстрем. Твердость, по определению П. А. Ребиндера, — это сопротивляемость тела прилагаемой упругой или пластичной деформации. Чем больше твердость тела, тем труднее происходит его разрушение. При разрушении твердого тела увеличивается его поверхность. Работа увеличения поверхности в равновесных условиях — это обратимая поверхностная работа о. Следовательно, должна наблюдаться симбатность хода о, ф-кривых и кривых зависимости твердости от потенциала. Одиако однозначной количественной связи между твердостью и поверхностной работой не существует, так как процесс увеличения поверхности твердого тела при его разрушении практически идет в неравновесных условиях. [c.52]

    Для работы следует испо. 1ь к)[1ать гальванические элементы без жидкостиого контакта (без переноса иоиов), в которых отсутствует неравновесный диф-( )у 1иоиный потенциал, или элементы, в которых д- -0, так как расчеты термо.чи-иамических характеристик по уравнениям (Х.13) — (Х.17) можно проводить то.и,-ко для равновесных систем. [c.149]

    В предыдущей главе описаны кинетические законы, которым следуют химические реакции, причем весь процесс рассматривался только на молекулярном уровне. В то же время в реальных условиях эволюция химических систем привела к последовательному образованию множества сложных динамических структур, подготовивщих переход химической эволюции в биологическую. Поэтому проблема возникновения микро- и макроорганизаций в неравновесной системе, получающей от внешней среды вещества и энергию (например, развивающейся в изотермических условиях), исключительно важна. Возможно ли возникновение упорядоченности— временной и пространственной — в исходно однородной системе, в которой протекают химические реакции Трудность решения этой задачи обусловлена тем, что нет столь надежного признака устойчивости неравновесных систем, какими для равновесных является экстремум соответствующего термодинамического потенциала. Поэтому приходится прибегать к изучению кинетики процессов и в ней искать условия возникновения упорядоченности. В наиболее общей форме эта задача решена Тьюрингом (1952), показавшим, что в результате развития химической реакции при постоянной температуре и диффузионном перемешивании концентрации промежуточных продуктов реакции могут распределяться в пространстве неравномерно, образуя зоны различной концентрации. [c.325]

    Уже отмечалось, что в случае диффузионных потенциалов мы имеем дело с неравновесными системами, так как разность концентраций порождает постоянную направленную диффузию вещества. В противоположность диффузионному, доннанов потенциал представляет собой в полном смысле слова термодинамически равновесную разность потенциалов, которая может быть рассчитана из общих термодинамических закономерностей Гиббса — Гельмгольца. [c.186]

    Кроме пснлтия стандартного потенциала электрода, существуют понятия равновесного (обратимого), неравновесного (необратимого) потенциала мета.лла, которые иллюстрируются на рис. 4.5, [c.45]


Смотреть страницы где упоминается термин Равновесные и неравновесные потенциалы: [c.46]    [c.372]    [c.33]    [c.45]    [c.534]    [c.253]    [c.116]    [c.607]    [c.161]    [c.445]    [c.393]    [c.596]    [c.32]   
Смотреть главы в:

Руководство к лабораторным работам по коррозии и защите металлов -> Равновесные и неравновесные потенциалы




ПОИСК





Смотрите так же термины и статьи:

Неравновесный ЯЭО

Потенциал равновесный

Потенциалы неравновесные

Равновесные и неравновесные электродные потенциалы



© 2025 chem21.info Реклама на сайте