Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции на адсорбентах

    Мелкозернистые вещества (с частицами 0,1—0,8 мм), насыпанные слоями, широко применяются в качестве катализаторов, компонентов реакций, адсорбентов или контактов-теплоносителей, что объясняется следующими преимуществами псевдоожиженных тел  [c.86]

    Активирование обозначает ускорение физических, химических и биохимических процессов или перевод специфических физиков химических и биохимических агентов (катализаторов, ферментов, субстратов биохимических реакций, адсорбентов) из недеятельного в активное состояние. Явление, противоположное активированию, называют инактивированием или дезактивированием. [c.242]


    Реакция окисления НгЗ в серу может осуществляться как в жидкой фазе, так и на поверхности адсорбентов и катализаторов.  [c.192]

    Однако имеется много данных, опровергающих эти простейшие представления. Так, например, самые эффективные адсорбенты не всегда являются и наиболее эффективными катализаторами. Кроме того, каталитическое действие весьма специфично, т. е. определенные реакции катализируются только соответствующими катализаторами. Очевидно, требуется не только сближение реагирующих молекул. Согласно данным современной науки, адсорбция рассматривается как условие, необходимое, но не достаточное для протекания реакции на поверхности твердых катализаторов. [c.204]

    Нейтрализация высоковязких масел, содержащих продукты реакции сернокислотной очистки, водной щелочью почти невозможна вследствие быстрого эмульгирования, но легко осуществляется контактным методом. Используются также кислотно-активированный бентонит или мелкозернистая фуллерова земля. Эти адсорбенты применяются в виде порошка размером от 100 до 200 меш в количестве от 12 до 120 г л смешиваясь с избытком [c.270]

    В том случае, когда происходит адсорбция газов из их смеси, например при адсорбции компонентов бинарной газовой смеси, имеются как бы две параллельные реакции взаимодействия газов А и В со свободной поверхностью адсорбента по схеме Лэнгмюра (предполагается, что молекулы А и В адсорбируются на одних и тех же свободных местах поверхности)  [c.448]

    Химическое модифицирование поверхности адсорбентов и различных высокодисперсных тел (пигментов, наполнителей для полимеров, волокнистых материалов и т. п.) с помощью инертных, а также способных к реакциям сополи-меризации групп имеет большое практическое значение для улучшения свойств различных покрытий и пластмасс. [c.504]

    Адсорбционная способность адсорбентов зависит от ряда физических и химических факторов. Величина адсорбции определяется комплексом физических взаимодействий между адсорбируемым веществом и поверхностью адсорбента, а также химическими реакциями адсорбируемого вещества с поверхностным слоем молекул адсорбента. Активность и срок службы являются важнейшими факторами, определяющими промышленное значение катализаторов и адсорбентов. Активность адсорбентов характеризуется количеством адсорбированного вещества в граммах на 100 г адсорбента. Эта величина называется адсорбционной активностью. [c.23]

    Одним из необходимых этапов реакции является адсорбция катализатор должен обладать способностью адсорбировать частицы исходного компонента на своей поверхности, т. е. быть адсорбентом. Характерной особенностью адсорбента является большая площадь поверхности, приходящаяся на единицу его массы. При физической адсорбции вещество конденсируется на поверхности адсорбента в виде тонкого мономолекулярного слоя. Силы, удерживающие адсорбированное вещество на поверхности, имеют физическую природу и носят название сил Ван дер Ваальса. Величина [c.110]


    Осушители данной группы отличаются эффективностью, поскольку их взаимодействие с водой в условиях осушения необратимо. Однако по сравнению с адсорбентами их применение ограничено способностью вступать в реакции с некоторыми растворителями. [c.171]

    При подобных процессах могут значительно изменяться и свойства самого поглощенного газа. Если газ даже и не образует настоящих устойчивых химических соединений с атомами адсорбента, то все же под действием наиболее активных участков поверхности адсорбируемые молекулы могут в той или другой степени деформироваться и несколько изменять свои химические свойства. Такого рода эффекты играют, по-видимому, существенную роль во многих случаях при гетерогенном газовом катализе для многих реакций это установлено непосредственно на опыте. [c.371]

    Различная интенсивность адсорбционных процессов на различных участках поверхности данного адсорбента объясняется неоднородностью поверхности. Каталитическая активность материала обычно связана с адсорбцией реагирующих веществ на активных для данного процесса участках его поверхности, поэтому решающее значение имеет наличие именно этих активных участков (активных центров). Поэтому имеет значение не только адсорбция молекул исходных веществ, но и десорбция образующихся молекул п одуктов реакции. Существенно развитие поверхности, однако даже при значительной поверхности материал не будет активным катализатором, если структура и состояние ее таковы, что на ней нет необходимых активных центров. Вследствие этого для активности катализатора имеет значение не только химический его состав, но, не в меньшей степени, и способ изготовления, от которого зависят состав, структура и состояние поверхности катализатора. Так, специально приготовляемая активная окись алюминия служит хорошим катализатором реакции получения этилена путем дегидратации этилового спирта. Но для получения такой активной окиси алюминия необходимо тщательно соблюдать определенные условия, без чего она при том же химическом составе может не обладать активностью или быть мало активной. [c.495]

    Каталитическая очистка газов основана на каталитических реакциях, в результате которых находящиеся в газе вредные примеси превращаются в другие соединения. Таким образом, в отличие от рассмотренных приемов каталитические методы заключаются не в извлечении токсичных примесей из газового потока, а в превращении их в соединения, присутствие которых допустимо в атмосфере, или в соединения, сравнительно легко удаляемые из газа. При этом требуются дополнительные стадии очистки— абсорбция жидкостями или твердыми адсорбентами. Для очистки газов применяется почти исключительно гетерогенный катализ на твердых катализаторах (см. ч. I, гл. VII). Наиболее распространен способ каталитического окисления токсичных органических примесей и оксида углерода при низких температурах, т. е. без подогрева очищаемого газа (кли воздуха). Каталитическая очистка от вредных оксидов и сернистых соединений производится также их гидрированием так, методом избирательного катализа гидрируют СО до СН4 и Н2О, оксиды азота — до N2 и Н2О и др. [c.237]

    Сульфиды можно обнаружить с помощью некоторых реакций, сопровождающихся образованием осадков или появлением характерной окраски. В отсутствие тиофенов сульфиды обнаруживают по появлению красного, сравнительно неустойчивого окрашивания с гексанитроцерратом аммония [135]. В работе [136] качественным анализом на присутствие сульфидов и тиофенов служит специфическая окраска активированного адсорбента под влиянием сульфидов — в красный, тиофенов — в зеленый, а их смеси — в вишневый цвет. Для проведения реакции адсорбент засыпают в стеклянные трубки диаметром 5 мм и длиной 200 мм. На поверхность адсорбента наносят пипеткой 0,1 —1,0 мл топлива, не содержащего кислородных соединений. После распределения топлива по поверхности адсорбента (примерно через 10 мин) фиксируют окраску. Чувствительность реакции 0,001% серы. [c.156]

    Основной оксид алюминия. Оксид алюминия обычно имеет щелочную реакцию, что обусловлено самой методикой его получения. Об этом следует помнить, особенно если щелочная реакция адсорбента нежелательна. У оксида алюминия фирмы AMAG для ТСХ pH примерно равен 9. Приготовить суспензию можно, смешав 20 г адсорбента с 50 мл дистиллированной воды. Основной оксид алюминия для ТСХ, выпускаемый фирмой Woelm, не содержит связующего, и суспензии этого адсорбента можно готовить по описанной выше методике. [c.71]

    Реакторный блок установки APT состоит из лифт —реактора 1 с бункером —отстойником 2, где при температуре 480 — 590 °С и очень коротком времени контакта асфальтены и етеросоединения частично крекированного сь рья сорбируются на специальном широконо — ростом микросферическом адсорбенте (арткат) с малыми удельной поверхностью и каталитической активностью и регенератора 3, в котором выжигается кокс, отлагающийся на адсорбенте. В процессе APT удаление металлов достигает свыше 95 %, а серы и азота — 50 — 85 %, при этом реакции крекинга протекают в минимальной степени (адсорбент не обладает крекирующей активностью). Примерный выход (б % об.) продуктов APT при ТАД гудрона составляет газы С -С — 3 — 8 нафта — 13—17 легкий газойль — 13—17 тяжелый газойль — 53 — 56 и кокс — 7 — 11 % масс. Смесь легкого и тяжелого газойлей с незначительным содержанием м<ггаллоБ является качественным сырьем каталитического крекинга, где выход бензина достигает более 42 % масс, (табл.8.3). [c.108]


    Наконец, между молекулой адсорбата и молекулами, атомами или ионами поверхности адсорбента может возникнуть настоящая химическа- реакция с образованием нового поверхностного химического соединения. В этом случае говорят о хемосорбции. Примером хемосорбцил является адсорбция кислорода поверхностями металлов. Хемосорбция с поверхности может распространиться и на объем адсорбента, переходя в обычную гетерогенную реакцию. [c.439]

    Равным образом, вместо угля было предложено применение силикагеля. Его адсорбционная способность несколько ниже, чем активированного угля, но, в отличие от последнего, при силикагеле не происходит никаких химических реакций. Когда адсорбент насыщен, его выводят из сферы действия паров, и отгоняют током перегретого пара адсорбированные ушвводдроды. [c.144]

    Исходное сырье нагревают до 620° сначала в теплообменнике, а затем в огневой печи, после чего оно поступает в реакционную печь. Прод5жты дегидрогенизации из реактора направляют в колонну, где они охлаждаются путем непосредственного смешения с циркулирующим холодным маслом. После охлаждения продукты реакции сжимают, снова охлаждают и далее направляют сначала в адсорбер, а затем в отпарную колонну для выделения из насыщенного адсорбента фракции С4. Фракционной и экстракционной [c.66]

    Волькенштейн и Киселев подчеркивают, что при рассмотрении системы адсорбент — адсорбат как единой квантовомеханической системы электронный переход означает лишь переход носителя тока (электрона, дырки) из одного энергетического состояния в другое без фиксации геометрии перехода. Однако прп сохранении иона-ми решетки своих индивидуальных свойств и отсутствии зон проводимости такая трактовка уже становится неприемлемой. В этом случае переход электронов от молекулы органического соединения к твердому катализатору может привести к обычной реакции, восстановления катиона переменной валентности, входяш его в состав катализатора, аналогично тому, как это происходит в гомогенном ката 1изе [c.28]

    Более перспективными являются процессы окислительной конверсии сернистых соединений, основанные на реакциях избирательного каталитического окисления их без предварительного извлечения из углеводородных газов. Разновидностью этих процессов являются адсорбционнокаталитические, которые основаны на селективном извлечении сернистых соединений твердыми адсорбентами-катализаторами с последующим превращением адсорбированных соединений (например, в элементную серу) и абсорбционно-каталитические процессы, основанные на ж>зд<о-фазных реакциях прямого окисления сернистых соединений. [c.42]

    Органические вещества, оставшиеся на адсорбенте, состоят и полициклических ароматических углеводородов, смол и, вероятно, серосодержащих соединений. В результате каталитического воздействия алюмосиликатного адсорбента они претерпевают реакции уплотнения. Элюент, не обладающий поверхностной активностью, каким является бензин, не способен вытеснить эти вещества поверхности адсорбента, поэтому их выжигают в лро-цессе его регенерации при высокой тем1пературе ( 600°С) и окислительном воздействии кислорода воздуха. [c.274]

    Адсорбенты можно разделить на следующие общие категории бокситы (природные минералы, состоящие в основном из А1зОз) активированная окись алюминия (очищенный боксит) гели (вещества, состоящие из окиси кремния или алюмогеля и получаемые с помощью химических реакций) молекулярные сита (натрийкальциевые силикаты, или цеолиты) углерод (древесный уголь), адсорбционные свойства которого получаются в результате активирования. Все эти вещества, кроме угля, применяются для осушки газа. Активированный уголь используется для извлечения углеводородов из природного гааа и очистки газа от некоторых примесей. Активность угля по воде очень незначительна. Первые четыре класса адсорбентов приведены в порядке возрастания их стоимости, определяемой их свойствами. Чем больше поглотительная активность адсорбента, тем он дороже стоит, хотя пропорциональность здесь и не соблюдается. Окончательный выбор адсорбента должен производиться с учетом стоимости оборудования, срока службы адсорбента, эффективности его применения в данном процессе и т. д. Чрезмерное внимание к одной лишь стоимости может [c.240]

    Процесс дина-крекинг (фирма Хайдрокарбон рисёрч ) позволяет перерабатывать разнообразное остаточное сырье с высокой коксуемостью и большим содержанием металлов, азота н серы. В этом процессе (испытан на пилотной установке, строится полупромышленная установка мощностью 250 тыс. т/год) горячее сырье вводят в верхнюю часть вертикального трубчатого реактора, где оно крекируется в кипящем слое инертного теплоносителя (товарный адсорбент) в присутствии водородсодержащего газа. Образующиеся дистиллятные продукты частично или полностью могут быть направлены на рециркуляцию (табл. V. 13). Выделяющийся кокс осаждается на частичках носителя, которые непрерывно опускаются вниз, и, пройдя отпарную зону, поступают в нижнюю часть реактора. В ней происходит газификация кокса парокислородной смесью с образованием водородсодержащего газа, поток которого поднимается вверх. При этом, двигаясь через- отпарную зону, газ отпаривает с поверхности носителя адсорбированные углеводороды, а затем поступает в верхнюю часть реактора, поставляя необходимый для реакции водород. Частички носителя после выжига кокса в зоне газификации через транспортную трубу, расположенную в центре реактора, пневмотранспортом (паром или топливным газом, образующимся в процессе) подают в зону реакции. Состав продуктов процесса дина-крекинг зависит от количества рисайкла (табл. V. 14) и температуры в зонах гидрокрекинга (табл. V. 15) и газификации. В зависимости от набора продуктов температуру в зоне гидрокрекинга изменяют от 496 (почти полностью жидкие продукты) до 760 °С (преимущественно газ ), а в зоне газификации — от 927 до 1038 С. [c.123]

    В последние годы был разработан ряд процессов адсорбционной деас-фальтизации. В 1983 г. в США пущена установка адсорбционной деасфальтизации (процесс ART) мощностью примерно 2,5 млн. т/год (капиталовложения — около 50 млн. долл.). Процесс A1RT предназначен для адсорбционной деметаллизации (а также частичной декарбонизации, обессеривании и деазотирования) нефтяных остатков, которые затем используют в качестве сырья каталитического крекинга. Процесс осуществляют на установке, аналогичной обычной установке каталитического крекинга и состоящей нз реактора (лифт-реактора), где при температуре 480—590 °С и очень коротком времени контакта сырья и адсорбента асфальтены и другие металлы, серу и азотсодержащие соединения с низким содержанием водорода сорбируют на специальном мпкросферическом адсорбенте ( арткат ), и регенератора, в котором выжигают кокс, отлагающийся на адсорбенте. В процессе ART удаление металлов достигает свыше 95%, а серы и азота — 35—50%. Реакции крекинга и дегидрирования протекают лишь в минимальной степени. [c.130]

    При выборе выражений для Г или возможны разные подходы, предполагаются различные механизмы протекания реакций на поверхности катализатора. Выражение различные механизмы не совсем удачно, так как под механизмом реакции следует понимать механизм перестройки молекулярных орбиталей в процессе хемосорбции и каталитического акта. Наиболее часто используют механизмы, предложенные Лэнгмюром — Хиншельвудом и Ридилом. Согласно Лэнгмюру —Хиншельвуду, реакция протекает между двумя соседними хемосорбированными частицами. Это соответствует положению о том, что Г,- в уравнении (228.1) определяется величиной хемосорбции г-го компонента. Лэнгмюром было выведено уравнение для адсорбции г-го компонента из смеси газов исходя из предположения о том, что на поверхности адсорбируются все компоненты, но в разной степени, в зависимости от энергии взаимодействия с поверхностью адсорбента. При этом уравнение Лэнгмюра принимает вид [c.645]

    Дйиа-крекиш позволяет перерабатывать разнообразное остаточное сырье с высокой коксуемостью и большим содержанием метгллов, азота и серы. Процесс проводится в трехсекционном реакторе с псевдоожиженным слоем и внутренней рециркуляцией инертного микросфе-рического адсорбента. В верхней секции реактора при температуре примерно 540 С и давлении около 2,8 МПа осуществляется собственно гидропиролиз тяжелого сырья. Носитель с осажденным коксом через зону отпаривания поступает в нижнюю секцию реактора, где проводится газификация кокса парокислородной смесью при температуре около 1000 С с образованием водородсодержащего газа (смесь СО и Нг). Последний через отпарную секцию поступает в верхний слой теплоносителя, обеспечивая необходимую для протекания реакций гидропиролиза (гидрокрекинга) концентрацию водорода. Таким образом, в данном процессе гидротермолиз сырья осуществляется без подачи водорода извне. Регенерированный теплоноситель-адсорбент далее пневмотранспортом подается в верхнюю секцию реактора. [c.80]

    Кабельное масло С-100 вырабатывается путем дополнительной очистки синтетическим алюмосиликатным адсорбентом масла МС-20, получаемого из смеси кара-чухурской и сураханской нефтей. В процессе перколяциопной очистки количественно удаляются-ароматические углеводороды (до отрицательной формолитовой реакции по Настюкову). Масло С-220 аналогично С-110, по отличается от него пониженной вязкостью (табл. 10. 4). [c.527]

    Транс-реактор представляет собой участок горизонтальной грубы, тангенциально входящий в перви 1ный сепаратор-циклон. В начале трубы реактора расположен узел смешения горячего регенерированного адсорбента с подогретым сырьем, которое диспергируется с помощью ультразвуковых форсунок и водяного пара. Продукты реакции из циклонного сепаратора уходят во фракционирующую колонну через мультициклон, а адсорбент - через [c.22]

    Для сухой сорбции сероводорода из отходящих газов чаще всего применяют очистные массы на основе оксидов железа, цинка, меди, марганца. В последние годы для этого начали применять синтетические цеолиты. Поглощение НгЗ очистными массами и регенерация адсорбентов — процессы, сопровождающиеся химическими реакциями. Например, при очистке окисножелезной массой активным компонентом поглотителя служит гидроксид железа  [c.238]

    Гидролитическое гидрирование крахмала в сорбит предложили Натта и Беати [20], применив для этой цели никель на кизельгуре в присутствии фосфорной кислоты. Для создания кислой среды Использована не только свободная фосфорная кислота, но и вещества, дающие кислую реакцию лишь при нагревании, — пропитанные фосфорной кислотой адсорбенты (диатомит, активный уголь и т. п.) или гидролизующиеся при высокой температуре вещества (дигексилсульфат), сульфат натрия и оксихлорид сурьмы. Кислую среду при гидролитическом гидрировании крахмала в сорбит могут создавать также соли слабого основания и сильной кислоты — хлориды магния, кальция, никеля, олова, сульфаты магния и никеля [21]. Исключая применение свободной кислоты, можно в кислотоупорном исполнении изготовлять лишь подогреватель, реактор и холодильник, остальное оборудование не требует специальной защиты. [c.76]

    Возможность очистки глинами, флоридином (гумбрином) и другими адсорбентами основана на избирательном поглощении ими преимущественно смол, сернистых соединений и иных вредных иримесей. Эта полезная избирательная адсорбция сопровождается (особенно заметно при использовании в качестве сорбента флоридина или кавказских глин — гумбрина) реакциями полимеризации и конденсации диолефиновых и олефиновых углеводородов (выход полимеров обычно составляет [c.317]


Смотреть страницы где упоминается термин Реакции на адсорбентах: [c.29]    [c.245]    [c.215]    [c.242]    [c.510]    [c.513]    [c.310]    [c.303]    [c.62]    [c.15]    [c.256]    [c.401]    [c.115]    [c.123]    [c.39]    [c.239]    [c.67]   
Смотреть главы в:

Лабораторное руководство по хроматографическим и смежным методам Часть 1 -> Реакции на адсорбентах

Лабораторное рук-во по хроматографическим и смежным методам Ч 1 -> Реакции на адсорбентах




ПОИСК







© 2025 chem21.info Реклама на сайте