Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство полимеров и волокон

    Когда появились синтетические полимеры, единственным способом изменения их состава и свойств был подбор новых исходных мономеров. Однако, как выяснилось впоследствии, некоторые полимеры нельзя получить непосредственным синтезом из низкомолекулярных соединений вследствие неустойчивости этих мономеров. Так, например, поливиниловый спирт, используемый для производства синтетического волокна, а также в качестве эмульгатора, для шлихтовки тканей и в пищевой промышленности, не может быть получен полимеризацией мономера. Его получают омылением готового полимера — поливинилаце-тата. Ацеталированием поливинилового спирта получают различные поливинилацетали, используемые в производстве лаков и покрытий. [c.210]


    Одним из важнейших достижений в области производства полимеров и синтетических волокон является производство изо-тактических полиолефинов, которые дают возможность получать материалы, обладающие исключительно ценными свойствами — сверхвысокой механической и термической прочностью, способностью перерабатываться в волокна и т. д. [c.76]

    При уменьшении отбора полимера вследствие останова отдельных прядильных мест или прядильной машины расплав полиэфира в течение всего времени останова сливают через узел гранулирования или через входные штуцеры в блоки прядильной машины. Узел гранулирования может работать непрерывно, пропуская в нормальных условиях до 5% Всего полиэфира, и автоматически увеличивать свою производительность при появлении избытка полимерного продукта. Полученный гранулят направляют для производства полиэфирного волокна неответственных ассортиментов. Поскольку он обычно имеет молекулярную массу несколько более низ- Ую, чем в периодическом процессе, нри котором необходимо учитывать [c.179]

    Для производства полимеров, волокна нитрон Для производства органического стекла В качестве растворителя [c.117]

    Для формования моноволокна могут быть использованы полимеры с большим молекулярным весом, чем для производства штапельного волокна н филаментных нитей. В этом случае получаются моноволокна, отличающиеся высокой прочностью. [c.248]

    На практике очень трудно избежать формирования структур при любых процессах переработки, за исключением таких сравнительно медленных процессов, как формование разливом и компрессионное прессование. Часто, однако, формирование структур в процессах переработки носит случайный характер, плохо поддающийся объяснению, и кажется неизбежным злом (особенно в тех случаях, когда оно проявляется в потере стабильности размеров). С другой стороны, в переработке полимеров существуют классические примеры целенаправленного формирования структур при производстве ориентированного волокна (экструзия с последующей вытяжкой) и при получении пленок с одно- и двухосной ориентацией методом экструзии или при изготовлении пленок методом полива на барабан с целью формирования структур, придающих пленке необходимые механические и оптические свойства. [c.45]

    Значение полимеров в жизни современного общества огромно, и теперь не нужно никого убеждать в том, что рост производства и потребления полимеров — одно из генеральных направлений развития народного хозяйства. Трудно назвать какую-либо отрасль промышленности и транспорта, культуры и быта, сельского хозяйства и медицины, оборонной или космической техники, где можно было бы обходиться без полимеров, которые здесь выступают уже не в качестве заменителей таких традиционных природных материалов, как металлы, силикаты, натуральные волокна или древесина, а как совершенно новые материалы с неизвестными ранее свойствами. В последнее время по темпам рост производства полимерных, материалов технического применения значительно опережает рост производства аналогичных материалов из натурального сырья. Так. мировое производство полимеров типа полиэтилена, полипропилена, фенопластов, полихлорвинила, полистирола и других опережает производство черных металлов, все более расширяющееся, а получение химических волокон по сравнению с природными из хлопка, шерсти, льна подтверждает опережающую роль полимеров. Высока также экономическая эффективность их производства и применения. В данном случае речь идет не о противопоставлении одних материалов другим, а оценивается объективная тенденция современного развития материальных ресурсов недалекого будущего человеческого общества, потребности которого не могут быть полностью удовлетворены только за счет природных богатств нашей планеты. [c.6]


    Карбоновые кислоты играют важную роль в производстве полимеров, идущих на изготовление искусственного волокна, пленок и красок. Уксусная кислота-одно из наиболее важных в промышленном отношении веществ с низкой молекулярной массой. Сравнительно новый способ получения уксусной кислоты состоит в реакции метанола с моноксидом углерода в присутствии родиевого катализатора  [c.432]

    Зависимость характера деформации от температуры и молекулярной массы учитывается при производстве ориентированных кристаллических полимеров (волокна, пленки и т. д.). Если полимер для образования шейки требует применения слишком высоких температур, то того же результата можно достигнуть путем замены этого полимера, не способного к вытяжке без разрыва образца, более высокомолекулярным материалом того же строения. [c.457]

    Диметилтерефталат является важным полупродуктом в производстве полимеров, из которых вырабатывают синтетическое волокно—лавсан. Тайне полимеры получают путем поликонденсации диметилтерефталата с этиленгликолем (стр. 408). [c.262]

    Яркие И прочные пигменты различных цветов широко применяются для окраски пластических масс, резины, в лакокрасочной промышленности. С развитием производства полимеров пигменты стали широко применяться для окраски текстильных материалов. Так, при изготовлении химических волокон, в частности вискозных, в прядильную массу (стр. 443) вводят измельченные тонкодисперсные пигменты (величина частиц 1—2 мк), после пропускания прядильной массы через фильеры получают прочно окрашенные волокна. [c.307]

    Вопросам ориентации кристаллических полимеров посвящено много работ, что связано в первую очередь с широким использованием вытяжки кристаллических полимеров в производстве синтетического волокна. Известно, что необходимые физико-механические свойства синтетических волокон получают только после их предварительного вытягивания. [c.103]

    Другим примером использования повышенной растворяющей способности омагниченной воды в производстве полимеров является отмывка поливинилхлоридного волокна (ПВХ) от диметилформамида (ДМФ).Этот процесс в обычных условиях протекает очень медленно и требует громоздкого аппаратурного оформления. Опыты [c.199]

    Только после работ Рейна [37], который обнаружил, что полиакрилонитрил растворяется в гидротропных растворителях (например, в концентрированных растворах солей), начались -поиски высокополярных органических растворителей, способных к образованию прочных водородных связей между полимером и растворителем, в результате чего происходит растворение полимера. Открытие таких растворителей, как диметилформа-мид, дало возможность примерно с 1943 г. создать производство полиакрилонитрильного волокна [38]. [c.438]

    Промышленность основного органического синтеза производит разнообразные продукты, на основе которых получают полимерные материалы — синтетические смолы и пластмассы, химические волокна, синтетический каучук. Эти материалы не только не уступают по своим качествам природным, но в ряде случаев превосходят их. Кроме того, они значительно дешевле. О высоком уровне развития, достигнутом промышленностью основного органического синтеза США, свидетельствует доля этой страны в общем производстве полимеров в капиталистических и развивающихся странах в 1970 г. (%) пластмасс — 33, химических волокон — 31 синтетического каучука — 47. [c.302]

    Муравьиный альдегид может давать и высокомолекулярное соединение— полиформальдегид (полиметиленоксид). Этот полимер с п 1000 получают полимеризацией абсолютно сухого формальдегида в безводной среде в присутствии катализатора (карбонил железа). Полиформальдегид используется для производства синтетического волокна и разнообразных изделий. [c.127]

    Адиподинитрил N ( H2)4 N является одним из промежуточных продуктов в производстве синтетического волокна найлон-6,6 или анид. Последний представляет собой полимер соли АГ, получаемой взаимодействием адипиновой кислоты с гек-саметилендиамином — продуктом гидрирования адиподинитрила. Адиподинитрил является наиболее дефицитным сырьем в производстве соли АГ. Классический метод его получения основан на переработке ароматического сырья— бензола или фе нола. Электрохимический метод позволяет использовать алифатическое сырье — пропилен. Пропилен при окислении в присутствии аммиака (окислительный аммонолиз) образует акрило-нитрил  [c.209]

    Полиамидное волокно формуют только из расплава. В начале развития производства этого волокна применяли ленточный метод, который заключался в введении узкой ленты или профилированного прутка в головку, нагретую выше температуры плавления полимера, где полимер расплавлялся. Расплав под влиянием давления непрерывно поступающей ленты полимера продавливался через фильтр и фильеру, и волокно затвердевало и охлаждалось на воздухе. [c.331]


    До настоящего времени полиметилметакрилат не использовали в производстве синтетического волокна, так как нити из полиметил-метакрилата обладают ничтожной прочностью и малой гибкостью. Присоединением к основной цепи нолиметилметакрилата некоторого количества боковых ответвлений, состоящих из цепей поликапролактама, удалось придать полимеру новые ценные свойства. Привитой сополимер нолиметилметакрилата легко образует волокна, по качеству превосходящие волокно капрон. Очевидно, цепи полиметилмет-акрилата, к которыл-i присоединены ответвления поликапролактама, приобретают следующее строение  [c.542]

    Этиленгликоль с двухосновными кислотами образует высокомолекулярные соединения. Например, из этиленгликоля и терефтале-вой кислоты получают полимер, используемый для производства ценного волокна — лавсана (см. с. 324). [c.118]

    Полиэтилентерефталат плавится при 264 °С. Он обладает хорошей влаго- и светостойкостью и очень высокой термостойкостью. Несмотря на чувствительность эфирной связи к химическим воздействиям, изде ЛИЯ из полиэтилентерефталата стойки к действию кислот, щелочей и окислителей, что можно объяснить особенностями физической структуры и трудностью диффузии реагентов внутрь полимера. Полиэтилентерефталат применяется для производства синтетического волокна и пластмасс. Полиэфиры, полученные из этиленгликоля и о- и л1-фталевых кислот, применяются для изготовления лаков. [c.351]

    Полипропиленовое волокно, впервые полученное Натта в 1954 г., в настоящее время вырабатывается в промышленном масштабе в Италии, США, Англии, Японии и других странах. Освоение производства волокна нз стереорегулярного полипропилена потребовало больших затрат времени и труда. Так, итальянская фирма Полимер (дочерняя компания концерна Монтекатини) долгое время не могла наладить заводское производство полипропиленового волокна мераклон в виде филаментных нитей и штапельного волокна. Однако впоследствии выработка мераклона развивалась довольно быстрыми темпами достаточно сказать, что мощность фирмы в течение 196 г. возросла вдвое — с 300 до 600 т месяц [4]. По литературным данным [5], фирма Полимер выпускает полипропиленовое волокно следующих типов. [c.231]

    Технологический процесс производства мано волокна из дисперсии включает экструзию, удаление замасливателя, опекание, закалку и холодную вытяжку. Экструзию осуществляют через фильеру с отверстиями круглого сечения диаметром 1—2 мм. Скорость прядения при давлении 140 ат составляет 1,5—3 м1мин. Непрерывные нити из политетрафторэтилена формуют из концентрированных водных диаперсий, С одер-ж ащих - 75% полимера, сухим или мокрым способами. При формовании по мокрому способу дисперсию полимера продавливают через круглые отверстия фильеры диаметром 0,25—0,50 мм в осадительную ванну, заполненную 1—25%-ным водным раствор ом любой органической [c.375]

    После того, как Карозерсом были сформулированы необходимые условия образования линейных полимеров [4] и в 1935 г. открыт волокнообразующий полигексамети-ленадипамид (найлон 6,6, анид), а в 1938 г. Шлаком [5] получен поликапроамид (найлон 6, перлон, капрон), внимание большинства исследователей было обращено на полиамиды. Разработанные в этот период принципы рационального структурного построения производства полиамидного волокна, способы формования из расплава и ориентационного вытягивания волокна были позднее успешно применены для полиэфирного волокна. [c.9]

    Сложные эфиры ненасыщенных кислот и спиртов, например метилметакрилат, алкилакрилаты, используют как мономеры в реакциях полимеризации с образованием ценных полимеров. Поли-этилентерефталат, применяемый в производстве синтетического волокна (терилен (Англия), лавсан (Россия), дакрон (США), астер (Франция)), получают исходя из диметилового эфира терефталевой кислоты. [c.471]

    Так же как в случае полиэфиров, чем дальше полярные группы в цепи полиамида отстоят друг от друга, тем меньше температура плавления полимера и тем больше растяжимость и эластичность его. Можно регулировать способность полиамидов к кристаллизации и, следовательно, их свойства в широких пределах путем сополиконденсации (нарушения регулярности строения цепи) или путем более или менее полного замещения водорода в группах ONH алкильными группами (сокращение числа водородных связей). Замещение осуществляется или в готовом полимере, или как результат применения N-замещенных диаминов или лактамов. Подобными приемами удается синтезировать каучукоподобные полиамиды, пригодные для производства эластичного волокна. [c.311]

    Механохи мичеокие процессы играют важную роль в производстве резиновых изделий, регенерата, пленок, бумаги, картонов, пластических масс, искусственной кожи, лаков и красок, в текстильной промышленности, производстве искусственного волокна, при химической переработке полимеров (гидролизная, спиртовая промышленность и т. д.). [c.10]

    При высоких скоростях нагружения (более 1 мкек), когда не успевает осуществляться перестройка структуры, большей прочностью обладают образцы с крупносферолитной структурой. Однако в большинстве случаев наибольший интерес представляют долговременные механические характеристики. Поэтому принято считать, что наилучшие механические свойства имеют твердые полимеры с фибриллярными структурами, ориентированными в направлении действия нагрузки. Это свойство фибриллярных структур широко используется в технологии производства синтетического волокна, ориентированных пленок, труб и т. п. Отметим, что благодаря целенаправленному формированию надмолекулярных структур удалось увеличить прочность волокон в среднем в 1,5 раза при одних и тех же исходных продуктах. [c.146]

    Для обеспечения химической промышленности ароматическими углеводородами все большее значение приобретает нефтехимическое производство, в том числе каталитический риформинг (гидроформинг, платформинг). Из продуктов каталитического риформинга извлекают чистые бензол, толуол, ксилолы, служащие сырьем для производства синтетического волокна [I]. Постепенно начинают привлекать для получения полимеров и отдельные ароматические углеводороды Сд. В США начато в промышленном масштабе извлечение из риформинг-бензина псевдокумола и использование его для получения ряда исходных продуктов, применяющихся в синтезе полимеров (моно- и дикарбоновые кислоты и др.) [2]. С этой целью изучаются состав и методы выделения в чистом виде других ароматических углеводородов Сд, содержащихся в фракциях 150—170° С риформинг-бензина, пропил- и изо-пропилбензолов, о-, м-, -этилтолуолов, мезитилена [3]. [c.155]

    Важнейшей областью применения этиленгликоля является производство полимера для волокна лавсан. Он используется и как растворитель. Сочетание в этиленгликоле консервирующих и гигроскопических свойств делает его удобным для использования в производстзе косметических изделий, а также при отделке и крашении текстильных товаров. [c.222]

    Как уже отмечалось в гл. I, фенол является важным полупродуктом нефтехимического синтеза. Основная часть его, около 60—65%, перерабатывается на феноло-формальдегидные смолы, полиэпоксидные смолы и поликарбонаты. Фенол служит исходным веществом при синтезе капролактама — полупродукта для производства синтетического волокна найлон-6, неионногенных моющих средств, присадок (к топливу, маслам, полимерам), гербицидов и прочих химических продуктов. Области применения фенола показаны на схеме, приведенной на стр. 319. [c.318]

    При сухом методе формования получают волокна (тииа ликра ) толщиной 5—200 текс. Оборудование процесса аналогично применяемому в производстве ацетатного волокна. П. в. ио этому методу формуют из 40 — 60%-ного р-ра полимера. При этом пучок волокон из фильеры попадает в шахту, куда 1[ропускается горячий воздух или инертный газ (250—300°С). Сухое, но еще клейкое волокно обрабатывают водой или тальком и подают, предварительно подвергая авиважной обработке, сушке и термофиксации, на приемный механизм со скоростью 200—900 м мин. [c.28]

    Получены полимеры, представляющие собой простые эфиры целлюлозы и гликолевой или оксипропионовой кислоты, имеющие поперечные сшивки, образовавшиеся в результате действия формальдегида или глиоксаля [923]. Эти полимеры применяются для производства пленок, волокна, для пропитки тканей [924]. [c.82]

    Полимрры из вытянутых макромолекул имеют форму нити, обладающей достаточно большой прочностью. К таким природным полимерам относится только клетчатка. И хотя для производства искусственного волокна клетчатка обладает огромным преимуществом перед крахмалом, белками и другими высокомолекулярными соединениями, свойства волокна, которое получается из природ- [c.133]

    Быстрое развитие производства полипропиленового волокна объясняется в основном двумя причинами 1) доступностью и иг.зкой стоимостью исходного моноаюра и 2) более высокой температурой плавления этого полимера, чем полиэтилена. [c.257]

    Прежде чем из полимеров получили синтетическое волокно, в 1921 г. Г. Штаудингером было установлено макромо-лекулярное строение таких высокомолекулярных природных веществ, как каучук и другие коллоидные вещества, а в 1926 г. доказано существование макромолекул, в состав которых входят тысячи атомов. Исследование строения макромолекул стало возможным благодаря разработке в 1910—1920 гг. новых физических и физико-химических методов (ультрацентрифугирование, осмометрия, дифракция рентгеновских лучей и вискозиметрия) [174, с. 3]. В 1929 г. У. Карозерс начал фундаментальные исследования циклизации и полимеризации органических молекул. В 1932 г. Карозерс и Хилл обнаружили, что из расплавленных полиэфиров, которые путем молекулярной перегонки переводятся в суперполиэфир (термин Карозерса), можно вытянуть нити, которые, затвердевая при охлаждении, превращаются в бесконечные волокна. Однако лишь спустя несколько лет было налажено промышленное производство синтетического волокна из полиамида. Со временем искусственные ткани приобретали все большее значение, и производство их стремительно возрастало [174, с. 6, 9]. [c.212]


Смотреть страницы где упоминается термин Производство полимеров и волокон: [c.327]    [c.533]    [c.285]    [c.351]    [c.577]    [c.6]    [c.6]    [c.343]    [c.20]    [c.20]    [c.224]   
Смотреть главы в:

Технические записки по проблемам воды Том 2 -> Производство полимеров и волокон




ПОИСК





Смотрите так же термины и статьи:

Полимеры производство



© 2024 chem21.info Реклама на сайте