Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимер-машина

    Однако развитие структурной механики и физики полимерных тел требуется не только в структурном аспекте, ио и в феноменологическом. Для инженерной механики полимеров нужно знать количественные законы, характеризующие деформацию, прочность и разные другие механические свойства твердых полимеров. Для рациональной переработки полимеров нужно знание количественных законов движения жидких полимерных масс. Незнание этих законов серьезно осложняет развитие машиностроения в области перерабатывающих полимеры машин и развитие новых процессов переработки. Установление упомянутых феноменологических законов является самостоятельной задачей, но, кроме того, оно должно быть теснейшим образом связано с изучением молекулярной и надмолекулярной структур полимерного тела. Такие количественные закономерности деформируемости твердых и жидких полимеров, их прочности и других свойств, [c.137]


    Побочные продукты полимеризации — гомологи ацетилена, которые накапливаются в виде отложений в аппаратах, машинах и трубопроводах, склонны к самопроизвольному взрывному разложению. Самовоспламеняется на воздухе сухой остаток полимеров, образующийся на стадии регенерации растворителя после его насыщения гомологами ацетилена при концентрировании ацетилена из газов пиролиза. [c.24]

    Содержащиеся в газах пиролиза небольшие количества сажи и смолы могут отлагаться в машине или холодильниках. Кроме того, возможна полимеризация части высших ацетиленовых углеводородов, полимеры ко- [c.100]

    Имеется также большая потребность и в износостойких литьевых полиуретанах с твердостью по Шору А 10—40. В СССР низкомодульные полимеры вытеснили все ранее применяемые материалы для изготовления печатных валиков полиграфических машин, срок службы которых превышает срок службы валиков из бутадиен-нитрильных резин более чем в 10 раз. [c.548]

    Быстро растет потребление этилена для производства полиэтилена. В настоящее время полиэтилен является одним из наиболее широко применяемых продуктов, получаемых из углеводородного сырья. Производство полиэтилена в США в 1957 г. достигло 310 тыс. т/год. Из полиэтилена изготовляют пленки, изоляцию проводов, трубы, формованные изделия для холодильников, детали машин, посуду для косметических товаров и т. д. Полиэтилен не подвергается коррозии и сохраняет высокую прочность в широком диапазоне температур (не выходит из строя даже при замерзании в нем воды). Он обладает хорошими теплоизоляционными свойствами и легко формуется. В настоящее время разработана новая техника обработки полимера — формовка жестких листов, выдавливание нитей из полиэтилена и т. д. [c.75]

    Климатические условия как фактор износа проявляются в воздействии солнечной радиации, температуры, влажности. Наибольшее воздействие климатические условия оказывают на износ (старение) деталей машин, изготовленных из полимеров. [c.40]

    Обсуждение результатов моделирования. Данные по расчету физико-механических характеристик процесса набухания проводятся для интервала времени от 10—15 до И 10 с. Верхний предел обусловлен временем установления термодинамического равновесия, нижний — скоростью изменения химического потенциала растворителя в системе. Теоретически значение химического потенциала растворителя в материале полимера в начальный момент времени = О равно ,=о = —оо. В этот момент времени парциальный мольный объем растворителя ю в системе бесконечно велик, так как напряжения, возникающие в грануле сополимера, всегда имеют конечную величину, т. е. IV =о = Эти условия при < О не могут быть воспроизведены на ЦВМ (ввиду ограниченности разрядной сетки машины). Поэтому необходимо задавать конечные и начальные значения химического потенциала растворителя в сополимере и его парциального мольного объема. [c.325]


    По своему происхождению все волокна могут быть подразделены на природные и химические. Химические в свою очередь делятся на искусственные, изготовляемые из высокомолекулярных соединений, находящихся в природе в готовом виде (целлюлоза, казеин и др.), и синтетические волокна, получаемые из высокополимеров, предварительно синтезируемых из мономеров. Применение химических волокон растет с каждым годом. Этому способствует высокая экономическая эффективность их получения и применения, полная независимость производства от климатических и почвенных условий, практическая неисчерпаемость сырьевых ресурсов и возможность выпуска волокон с новыми, невиданными ранее свойствами. Так, затраты в человеко-днях на производство 1 т волокна составляют для шерсти (мытой) 400, для хлопка 238, а для вискозного штапеля всего 50. Если свойства природных волокон изменяются в узких пределах, то химические волокна могут обладать комплексом заранее заданных свойств в зависимости от их будущего назначения. Из химических волокон вырабатываются товары широкого потребления ткани, трикотаж, меховые изделия, одежда, обувь, обивка, спортинвентарь, драпировки, щетки, бортовая ткань, галантерея, заменители кожи, а также технические изделия корд, фильтровальные ткани, обивка для машин, рыболовные снасти, не гниющие в воде, канаты, парусина, парашюты, аэростаты, скафандры, искусственная щетина, электроизоляция, приводные ремни, брезенты высокой прочности, пожарные рукава, шланги, транспортерные ленты, хирургические нити, различная спецодежда и т. п. Химические волокна используются для герметизации и уплотнения аппаратов, работающих в агрессивных условиях. В производстве различных типов химических волокон как из природных полимеров, так и из смол имеется много общего, хотя каждый метод одновременно обладает своими характер- [c.207]

    Формование волокна прядение) осуществляется на прядильных машинах и заключается в продавливании прядильной массы через мелкие отверстия в фильере в среду, в которой струйка полимера затвердевает и образует тонкое волокно. В зависимости от природы прядильной массы прядение возможно вести из расплава или из раствора. [c.411]

    Для предотвращения окисления продуктов в плавитель 2 и реактор полимеризации 4 вводится азот. Расплавленный поли-капроамид выдавливается из реактора через щелевидную фильеру и поступает на охлаждаемый водой барабан 8. Образовавшаяся лента полимера подается в резательный станок 9, где измельчается в крошку. Из станка крошка поступает в экстрактор 10, в котором из полимера вымываются водорастворимые мономер и олигомеры. Промытый поликапроамид высушивается в сушилке 11 теплым воздухом и подается непосредственно на формование волокна в прядильную машину 12, или поступает на склад. Поступившая в прядильную машину крошка плавится в плавильной камере а, обогреваемой через змеевик, [c.419]

    Имеются сообщения, что защитные дорожные покрытия из битума, модифицированного полимером, сразу же после укладки выдерживают сильные ливни. Покрытие из обычного состава такой ливень полностью бы смыл. Известно также, что модифицированный жидкий битум, на который через несколько часов после укладки обрушился ливень, сильно прилипает к шинам и крыльям машин до тех пор, пока не высохнет дорога и покрытие не отвердеет. Эти трудности связаны с когезионной природой связующего. [c.238]

    Облако сопряженных связей карбазольного ядра образно можно сравнить с тучей, которая, как известно, в природе является генератором молний. Однако до начала грозы полимер тока не проводит — между тучами нет связи. Роль молнии в данном случае играет квант света он возбуждает электронное облако, то есть под действием электрического поля возбужденные электроны начинают перемещаться от одного карбазольного ядра к другому. Возникает электрический заряд. И дальше все идет примерно так же, как и в случае с селеновым полупроводником. С той лишь разницей, что полимер наносят на тонкую проводящую подложку и в копировальную машину заряжают сразу целый рулон такой полупроводниково-проводниковой пленки. По мере истирания рабочего слоя пленку постепенно перематывают с рулона на рулон. Таким образом число копий, которые можно сделать, не останавливая машину, возрастает в несколько раз. [c.129]

    Первая особенность состоит в том, что круг задач, решаемых машиностроительными предприятиями отрасли, очень широк. Это связано с производством машин, оборудования и инструментов для обеспечения геологоразведочных работ бурения и эксплуатации нефтяных и газовых скважин транспортирования газа, нефти и нефтепродуктов переработки нефти и газа, а также широкой номенклатуры продуктов и изделий на их основе (полимеры, резина и т.п.). [c.220]

    Поскольку использованный подход дает ответ не только на вопрос, как работает та или иная машина, но также и почему данное конструктивное решение является наилучшим из всех других теоретически возможных, мы надеемся, что эта книга будет полезна не только для студентов, инженеров-технологов, занятых в промышленности переработки полимеров, и ученых, но и для конструкторов, работающих над созданием нового перерабатывающего оборудования. [c.10]


    Самая первая из документально известных машин для переработки полимеров — это пластикатор для каучука, представляющий собой зубчатый ротор, расположенный внутри зубчатой ци- [c.12]

    К началу бурного развития производства полимеров и промышленности переработки пластмасс после второй мировой войны упомянутые выше машины являлись основным перерабатывающим оборудованием. Усовершенствование этих и создание новых машин в последующие годы привело к формированию сегодняшнего арсенала многообразных машин и методов переработки некоторые из них будут кратко рассмотрены в последующих разделах этой главы. [c.14]

    Вспененные термопластичные материалы получают, вводя в полимер вспенивающий агент. Существуют химические вспениватели, которые находятся внутри гранул, и физические, испаряющиеся вспениватели, которые впрыскиваются в расплав полимера. Высокое давление в экструдере препятствует вспениванию в машине, но, как только расплав выходит за пределы формующей матрицы, процесс вспенивания немедленно начинается. Расширяющиеся пузырьки приводят к возникновению локальной ориентации в полимере. Дополнительная ориентация может быть создана за счет продольной вытяжки. В зависимости от типа полимера, плотности готового изделия и вида вспенивателя переработка производится на одном одночервячном экструдере, на двух установленных друг за другом одночервячных экструдерах или на двухчервячных экструдерах. [c.19]

    При концентрировании растворов полимеров машина ZSK используется в качестве самоочищающейся камеры с резким понижением давления, т. е. декомпрессионной камеры [115]. Раствор полимера вне шнек-машины перегревается под давлением выше температуры кипения растворителя и впрыскивается в машину ZSK (рис. 108). При попадании сырья в ZSK происходит процесс декомпрессионного испарения, при котором в зависимости от выходной концентрации и температуры перегрева раствора большая или меньшая часть растворителя спонтанно испаряется. Испарительной и декомпрессионной камерой (емкостью) служит корпус (материальный цилиндр) шнек-машины. Противовращающиеся шнеки обеспечивают очистку декомпрессионной камеры и ее освобождение ог спекшихся образований, так что высвобождающиеся пары растворителя могут отсасываться противотоком и пластический материал с оставшейся, еще не испарившейся частью растворителя продвигаться вперед (прямотоком) в следующую секцию с нормальной дегазационной камерой. Таким образом, в описываемом устройстве принцип противоточной дегазации скомбинирован с декомпрессионным испарением. [c.166]

    Экструдер-аппарат непрерывного действия. На различных технических выставках вы можете наблюдать, как оператор неторопливо подсыпает время от времени в бункер из мешка ярко окрашенные гранулы полимера, машина мерно гудит, а с противоположного конца, где установлены какие-то устройства, непрерывно выползает готовый шланг, труба, профильный лист или буквально вываливаются бутьшки, банки, флаконы. [c.141]

    Машина МАСТ-1 для оценки антифрикционных свойств полимеров. Машина предназначена для испытания на трение материалов со [c.222]

    Фосфаты кадмия. Фосфат кадмия был также использован как катализатор при заводской полимеризации олефинов [13]. Фосфат кадмия, соответствующий формуле d (POgjg или d (Н2 0 )2, активнее нормального ортофосфата dg (РО )а. Первый из них готовился смешением ортофосфата и ортофосфорной кислоты в количествах, соответствующих формуле d (Р0 )2 + ИдРО . Этот катализатор применялся в гранулированном виде (от 10 до 20 меш), как таковой, или же в смеси с одинаковым объемом гранул пемзы тех же размеров при 200° и давлепии 12 ят для полимеризации фракции G3,—С нефтеперерабатывающих заводов. Катализатор готовился также в виде таблеток размером 3X5 мм при помощи специальной таблетирующей машины с применением 5 % графита как смазочного материала. Истинная кривая разгонки полимера, полученного при 200° и давлении 12 ат из фракции С3—С , не показала никаких площадок, соответствующих чистым углеводородам. Наоборот, полимеры, полученные подобным путем из фракции С при 150°, состояли главным образом из дибутиленов и трибутиленов. [c.200]

    Олефины со вторичными углеродными атомами поддаются полимеризации гораздо труднее даже при повышенной концентрации кислоты. При обработке пропилена 90—92%-ной серной кислотой наблюдалось образование спирта, производного от димера (4-метилнентена-1) [29]. Сернокислотная полимеризация м-бута-ленов не сулит никаких преимуществ и поэтому как технологический процесс распространения не получила. Амилены реагируют с серной кислотой несколько легче [12, 31]. Легкость, с которой олефины поддаются сернокислотной полимеризации, возрастает с увеличением молекулярного веса [32] додецен легко полимери-зуется в С24Н48,-димер с температурой кипения керосина и вязкостью легкого машинного масла. [c.226]

    Низшие фторпроизводные широко используют в холодильных машинах (фреон), а полимеры (с общей формулой [ Fj— Paln) — в качестве защитных материалов против коррозии последние способны выдерживать температуры до 400—450 °С (тефлон). [c.273]

    Образующийся свободный радикал инициирует дальнейший распад полисульфидных связей в полихлоропренполисульфиде. Процесс деструкции продолжается до образования стабильных связей К—5—К. В отсутствие тиурама образующиеся полимерные радикалы реагируют по двойной связи или а-метиленовой группой других полимерных молекул, вызывая структурирование полимерных цепей. Процессы деструкции под влиянием тиурам-полисуль-фидных связей происходят частично при щелочном созревании латекса и значительно более интенсивно при вальцевании или термопластикации, с одновременным взаи1 одействием образующихся полимерных радикалов с тиурамом по вышеуказанной схеме. Применение указанной системы регуляторов обеспечивает получение низкопластичного полимера, легко подвергающегося выделению из латекса методом зернистой коагуляции с образованием ленты на лентоотливочной машине, механически достаточно прочной в процессах формования, отмывки и сушки. Полимеры, полученные в присутствии серы и содержащие тиурам, легко пластицируются в процессе механической обработки, особенно в присутствии химически активных пластицирующих соединений (дифенилгуанидина совместно с меркаптобензтиазолом и др.) [24]. По мере израсходования тиурама или его разложения при нагревании или длительном хранении преобладают процессы структурирования. [c.374]

    Наряду с этими мероприятиями возможно использование таких инженерно-технических приемов, которые повышают надежность технологических аппаратов и машин конструкционное демпфирование возможных вибраций переход от статичес-ки-неопределимой к статически-определимой конструкции аппарата защитные покрытия твердыми металлами, полимерами, эмалями и др. изменение кинематической схемы функциониро- [c.99]

    В новейших типах литьевых машин используются червячные и дисковые пластикаторы материала. В последнем случае плавление полимера осуществляется за счет тепла, выделяющегося при трепии полимера между вращающейся и неподвижной плитами. Эти материалы перерабатываются при более низкой температуре, которая при этом регулируется. Такие машины могут применяться для формования жесткого поливинилхлорида, каучука и реактопластов. Литьевое оборудование с программированным управлением включает в себя счетнорешающее устройство, которое регулирует такие параметры, как температуру зон обогрева цилиндра, продолжительность впрыска и охлаж-де1шя, давление впрыска, скорость вращения червяка-плунжера. Автоматический контроль качества отливок не предусмотрен. [c.174]

    Температура в ванне 30—40°С, время пребывания в ней ткани 20—45 с. Пропитанная ткань, пройдя отжимные гуммированные валки, поступает в сушильную часть машины. Температура сушки 120—140 "С. Продолжительность сушки 2—3,5 мин. При сушке удаляются летучие и происходит частичное отверждение смолы (на 10—20 /о). Содержание летучих после сушки составляет 0,8—8,0% (в зависимости от типа ткани) количество полимера 47—57%. Затем пропитанная ткань раскраи- [c.65]

    Полиформальдегид является иростейптим примером гетероцепиого полимера. Он нредставляет собой белый твердый материал, химически весьма устойчивый. Применяется для изготовления деталей различных механизмов и машин. [c.380]

    ПЭТФ применяется преимущественно для производства волокна, на что расходуется до 90% всего производимого полимера. Применяется также для изготовления пленок, используемых для остекления и электроизоляции, светокопировальных материалов, клейких лент и лент для машин. Пленки из ПЭТФ вырабатываются методом экструзии из расплава с последующей плоскостной двухосной ориентацией и кристаллизацией. [c.420]

    Большинство гетероцепных полимеров получают по реакции поликонденсации. Наиболее известные из них —это полиэфиры, полиамиды, полиуретаны, поликарбонаты. Обычно гетероцепные полимеры имеют регулярные структуры, поэтому хорошо кристаллизуются и дают прочные волокна. Примерами таких полимеров могут служить поликаиролактам (капрон, силон), полиэтиленгли-кольтерефталат (терилен, лавсан), полигексаметилендиаммнади-пинат (найлон 6,6). Капрон и найлон могут заменять металл при изготовлении детален машин (шестерни, подшипники). Полиуретаны используются для получения синтетических кау-чуков. [c.308]

    Из сырой нефти получают следующие промежуточные и конечные продукты газообразные парафиновые углеводороды, легкий бензин, лигроин, керосин, дизельное масло, газойль, веретенное масло, дистилляты машинных масел (легкие, средние и тяжелые смазочные масла), цилиндровое масло, брайтсток, асфальт, твердый парафин, полимер-бензин, алкилат, нефтяной кокс, котельное топливо (соляры н мазут). [c.218]

    С целью иск.тючения трудоемких и ручных операций было предложено осуществлять доставку товарных полимеров в цистернах или прямоугольных емкостях с нижним сливом, а выгрузку — с помощью насоса РЗ или самотеком в отдельную емкость, обвязанную в нижней ее точке центробежным насосом типа 4К(ЗФ), линией для подач н воды или водяного пара (конденсата) и соединенную с выкидной линией насосных агрегатов высокого давления (у машинного зала НПС). [c.184]

    Исследован механизм изнашивания углеродных материалов на основе графита и политетрафторэтилена при трении без смазки по модифиш<рованным металлическим поверхностям. Углеродные материалы были разработаны на полимер - олигомерных матрицах и содержали армирующие компоненты и смазки. Для модифицирования поверхностей трения применяли механические, химические и физико-химические методы создания заданных параметров микрорельефа и поверхностной активности. Триботехнические исследования проводили на машине трения типа УМТ по схеме вал-частичный вкладыш при нагрузке до Ю МПа и скорости скольжения до I м/с. Анализ фазового состава и строения поверхностей трения осуществляли методами растровой электронной и атомной силовой микроскопии. Газоабразивная обработка поверхностей трения приводит к формированию специфического рельефа с высотой микронеровиости 1-3 мкм. Химическое фосфатирование образцов из стали 45 образует мелкозернистую пленку фосфатов марганца и железа с размерами единичных фрагментов до 10 мкм. Обработка поверхности трения разбавленными растворами фторсодержащих олигомеров с формулой Rf-R , где Rf. фторсодержащий радикал, Rj - концевая фуппа( -ОН, -NH2, -СООН) вызывает заполнение микронеровностей рельефа и выглаживания поверхностей. [c.199]

    В. Кайл и Д. Приор в США заявили, что такая машина была ими создана в 1876 г. [13]. Однако датой рождения экструдера, который играет такую существенную роль в современной технологии переработки полимеров, принято считать 1879 г., когда М. Грей запатентовал свою конструкцию в Англии [17]. Этот патент представляет собой первое ясное описание машины такого типа. Экструдер Грея имел также пару обогреваемых валков. Независимо от Грея червячный экструдер был изобретен Ф. Шоу и Д. Ройлом в США в 1880 г. [c.13]

    Изобретение литья под давлением относится к тому же периоду времени. Д. С. Смит и Д. А. Лок в 1870 г. изобрели машину для производства изделий литьем под давлением. Хотя это изобретение было рассчитано на применение для литья легких металлов, оно послужило основой для создания плунжерных литьевых машин для пластмасс. Двумя годами позже Д. В. Хиат получил патент на такую машину [12]. Надо отметить, что Хиат был пионером в области переработки полимеров он изобрел целлулоид, внес в перерабатывающее оборудование много усовершенствований, которые [c.13]

    Слово экструзия образовано из латинских слов ех и (гийег, соответственно означающих наружу и толкать (или давить ). Эти слова буквально описывают процесс экструзии, состоящий в выдавливании полимерного расплава через металлическую фильеру, которая непрерывно придает расплаву нужную форму. Методом экструзии производят полимерные изделия, бесконечные в одном направлении. К таким изделиям относятся изолированные провода, кабели, трубы, шланги и различные профили. К числу экструзионных изделий относятся также различные волокна, пленки, листы, которые производятся в значительных количествах. Существуют специальные машины, позволяющие непрерывно экструдировать даже сетки и перфорированные трубы. За некоторыми исключениями все полимеры можно перерабатывать методом экструзии, причем многим полимерам приходится дважды подвергаться экструзии на пути от реактора к готовому изделию вначале полимер попадает [c.14]

    Литьевая машина (рис. 1,6) состоит из двух основных частей пластнкатора и механизма смыкания. Пластикатор предназначен для приготовления расплава и нагнетания его в форму. Механизм смыкания автоматически открывает и закрывает форму и удерживает ее в закрытом состоянии во время впрыска, а также выталкивает из формы готовое изделие. Почти все современные литьевые машины снабжены червячными пластикаторамн с возвратно-поступательно движуш,имся червяком. При враш,енпи он работает подобно червяку экструдера, который плавит и нагнетает полимер. При поступательном перемещении он действует как литьевой плунжер. Обычно червяк приводится во вращение гидромотором. Его осевое перемещение осуществляется и регулируется гидравлической системой. [c.21]


Смотреть страницы где упоминается термин Полимер-машина: [c.209]    [c.24]    [c.343]    [c.277]    [c.307]    [c.420]    [c.229]    [c.187]    [c.662]    [c.5]    [c.402]    [c.14]   
Смотреть главы в:

Полимеры клетка жизнь -> Полимер-машина




ПОИСК







© 2025 chem21.info Реклама на сайте