Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная пиридина

    Молекулярный вес получающегося поликарбоната в основном зависит от температуры, количества пиридина, скорости прибавления фосгена и присутствия веществ, обрывающих рост цепи. Избыток пиридина, а также медленное прибавление последних порций фосгена (5—10%) способствует образованию поликарбоната более высокого молекулярного веса . [c.42]


    В лабораториях для осаждения асфальтенов из их смесей со смолами и углеводородами нефти. Жидкий пропан с той же целью применяется в промышленности (процесс деасфальтизации) для осаждения смол и асфальтенов из гудрона. Асфальтены растворяются в пиридине, сероуглероде, четыреххлористом углероде, а также бензоле и других ароматических углеводородах. Соотношение углерод водород в асфальтенах составляет приблизительно И 1. Химическая природа асфальтенов изучена мало. Молекулярный вес их исчисляется тысячами. Серы, кислорода и азота они содержат больше, чем смолы. Содержание асфальтенов в смолистых нефтях обычно составляет 2—4 вес. %. [c.33]

    Принципы, используемые при качественной интерпретации контактных (скалярных) сдвигов, можно проиллюстрировать, объясняя снижение величины сдвига в ряду Н(2) > Н(3)> Н(4) при координации пиридина с комплексом никеля (II). Более того, если с металлом координируется 4-метилпиридин, то сдвиги сигналов протонов метиль-ной группы происходят в направлении, противоположном сдвигам Н(4) пиридина. Область контактных сдвигов, наблюдаемых для молекулы лиганда, характеризует молекулярные орбитали лиганда, которые участвуют в делокализации спина (т.е. волновые функции для вкладов Ol, [c.178]

    Количественный групповой анализ ГАС ряда типов (сульфидов, тиофенов, простых эфиров, фуранов, пиридинов) затруднен из-за отсутствия в их спектрах полос, пригодных для использования в качестве аналитических. При изучении тяжелых фракций нефтей и битумов методами ИК спектроскопии возникают дополнительные трудности в связи с теж, что некоторые типы функциональных групп (фенольные, карбонильные, сульфоксидные), присутствуя в составе высокомолекулярных, соединений нефти, поглощают при меньших частотах, чем в составе чистых модельных соединений. Этот эффект связывают с более интенсивными меж-молекулярными взаимодействиями и ассоциацией молекул ВМС, содержащих повышенное количество этих функциональных групп [129, 131, 230]. [c.29]

    Неуглеводородная часть нефти состоит из сернистых, кислородных и азотистых соединений. Сера, количество которой колеблется от 0,1 до 7,0%, входит в состав меркаптанов, сульфидов, дисульфидов жирного ряда. По содержанию серы нефти делятся на малосернистые (например, кавказские нефти) и много-сериистые (нефти Башкирии, Татарии). Кислородные соединения нефти составляют нафтеновые кислоты, смолы и асфальтовые вещества. Смолы и асфальты — продукты с высокой молекулярной массой придают нефти темную окраску, они химически неустойчивы и легко при нагревании разлагаются и коксуются. Азотистые соединения нефти представлены производными пиридина, хинолина и аминами. Б нефтях содержится до 1,5 и 2,2% кислорода и азота соответственно. [c.32]


    Методы, основанные на сорбции паров жидкостей или самих жидкостей (вода, бензол, метанол, пиридин и др.), позволяют охарактеризовать коллоидную структуру угля. Перспективен статистический структурный анализ, при котором можно определить ароматичность, степень конденсированности и цикличность. Эти данные успешно дополняются чисто физическими константами молекулярный объем и рефракция, диамагнитная восприимчивость и другие, которые позволяют описать основную структуру вещества угля. [c.7]

Рис. 9. Зависимость молекулярной массы асфальтенов от массовой доли нх в бензоле (/) и пиридине (2). Рис. 9. <a href="/info/1388294">Зависимость молекулярной массы</a> асфальтенов от <a href="/info/6844">массовой доли</a> нх в бензоле (/) и пиридине (2).
    Интересна структура азотсодержащих соединений продуктов гидрокрекинга гудрона высокосернистой арланской нефти [202]. Для анализа использовали газожидкостную хроматографию, ИК-и УФ-спектроскопию и масс-спектрометрию. Концентрат азотсодержащих соединений имел молекулярную массу 79—149, содер-"Жал 13,6 % азота в виде производных пиридина и анилина. [c.255]

    Рассчитать молекулярную массу и степень полимеризации полиакролеина из эбулиоскопических данных для его раствора в пиридине, если Д7 э = 4 10 фад. при С = 0,4 г/100 см . [c.68]

    Чтобы ответить на вопрос о строении первичных структур, необходимо проведение комплексных исследований с применением метода ЭПР, радиоактивных индикаторов и ступенчатой экстракции растворителями. Метод ступенчатой экстракции применялся ранее для изучения различных пеков [43]. Пек растворяли бензолом. Далее растворимую часть разделяли пиридином и хинолином последовательно, а нерастворимую часть смесью л-гексана и бензола в различных соотношениях. Всего получали 9 фракций. Первые семь фракций имели возрастающий молекулярный вес, последние две, очевидно, были составлены карбенами и карбоидами. К сожалению, в экспериментах не использовали метод ЭПР. [c.42]

    Пользуясь формулой (П1.14), можно найти величину Zo и, зная из опытных данных pZ , определить стерический фактор реакции. Так, для рассмотренного случая молекулярный вес пиридина Ма = 79, плотность Ра = 0,98 г/см , молекулярный вес иодистого метила Мв = 142, плотность р = 2,28 г/см . Приведенный молекулярный вес [c.77]

    В результате удаления молекулярно адсорбированного пиридина откачкой при 25°С в спектре (рис. 3.22, 3) в области валентных [c.74]

    ИК-спектры адсорбированных молекул пиридина. На рис. 2 приведены спектры пиридина, адсорбированного на цеолитах NaHУ-68(9,2) и ЫаНУ-85(4,5), отличающихся соотношением 8 02/А120з. Как видно из рис. 3,а, после откачки при 200°С четко проявляется полоса 1545 см принадлежащая иону пиридиния РуН+ [21, 22], и полоса 1450 см , приписываемая обычно Ру, адсорбированному на апротонных центрах (Ру. ) [22—23]. Однако эта полоса при 400°С расщепляется на две 1457 и 1440 см . Последняя имеет малую интенсивность и обычно относится к Ру, взаимодействующему с катионом [24]. Поскольку в образце МаНУ-68(9,2) осталось достаточно большое количество ионов натрия, появление этой полосы вполне возможно. Из-за малой интенсивности полоса 1440 сж- при температурах до 400°С перекрывается с полосой 1457 см и поэтому не проявляется в спектре. По мере повышения температуры полоса 1595 см ослабляется и исчезает при 400°С. Эта полоса характерна для молекулярного пиридина, связанного с гидроксильной группой водородной связью [25]. Интенсивность полосы 1545—1550 характеризующей РуН+, при повышении температуры сначала растет, а после 300°С снижается. Полоса 1490 см характерная для обоих типов кислотных центров [22—24], при повышении температуры ослабляется. [c.15]

    Основным доводом в пользу нахождения неспаренного спина в тг-си-стеме ароматического лиганда типа пиридина или фенильной группы является результат замещения атома водорода цикла на группу СН3. Если наблюдаемый сдвиг протона СН3 меняет знак по сравнению со знаком сдвига протона, находящегося в том же самом положении в кольце незамещенного соединения, то спиновая плотность находится в л-системе. Это происходит потому, что спиновая плотность в л-систе-ме — преимущественно углеродной системе—делокализована непосредственно на метильные протоны, т.е. связанные в этими протонами орбитали атомов водорода характеризуются небольшими коэффициентами в л-молекулярной орбитали. В незамещенном ароматическом соединении 1.5-орбиталь водорода ортогональна л-системе, и л-спиновая плотность должна поляризовать а-связь С — Н, чтобы повлиять на протоны. В результате знак спиновой плотности на Н противоположен знаку спиновой плотности в л-системе. [c.179]

    Схема реакций гидрирования азотсодержащих соединений показывает, что оно идет с разложением молекулы гетеросоединения в результате разрыва связей углерод — азот и сопровождается образованием молекулы аммиака и соответствующего углеводорода. В этом смысле реакции азотсодержащих соединений сходны с реакциями гидрирования соединений серы. Существенное различие заключается в том, что соединения азота заметно более устойчивы в условиях гидрирования, разложение их наступает при более высоких температурах и давлениях. Так, многие серосодержащие соединения довольно легко разлагаются уже при температуре 280 °С и давлениях до 5 МПа разложение пиридина и хинолина наблюдается при температурах выше 350°С и давлениях 10—20 МПа. Нейтральные азотистые соединения более устойчивы, чем основные. Пиррол и его производные гидрируются при высоком давлении и температуре 400 °С, еще более устойчивы производные карбазола. С увеличением молекулярной массы устойчивость соединений азота надает, так что разложение высокомолекулярных соединений азота наблюдается уже при простом нагревании. Тем не менее для осуществления деазотирования в целом требуются более жесткие условия гидрогенизациоиного процесса. При проведении процесса в конкретных условиях глубина очистки от азотсодержащих соединений, как правило, меньше глубины обессеривания. [c.295]


    Существенное влияние на результаты крекинга оказывают содержащиеся в сырье азотистые соединения. Обладая высокой основностью, они прочно адсорбируются на кислотных активных центрах и блокируют их. Ядами для алюмосиликатных катализаторов являются азотистые оонования аммиак и алифатические амины на активность алюмосиликатов не влияют При одинаковых основных свойствах большее дезактивирующее воздействие на катализатор оказывают азотистые соединения большей молекулярной маосы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Влияние различных соединений азота, добавляемых к декалину в количестве 0,11% N, на глубину крекинга (в %) в заданных условиях характеризуется следующими данными без добавки — 41,9 с аммиаком и метиламином — 42 с диамиламином — 42,3 с пиридином — 26,8 с индолом — 25,1 с а-нафтиламином — 21,8 с хинолином — 8,5 с акридином — 8,2. [c.228]

    Органические соединения класса пиридинов широко используются в качестве ингибиторов коррозии в сероводородсодержащих минерализованных коррозионных средах. В последнее время находят широкое применение их четвертичные соли, такие как хлористые аминопиридины. Однако не все соединения проявляют достаточную эффектив1юсть в одних и тех же условиях. Для установления зависимости степени заш иты стали индивидуальными соединениями от квантово-химических параметров последних были проведены расчеты методом пренебрежения двухатомным перекрыванием с помощью программы АМРАС таких параметров как дипольный момент молекул, энергии на верхних заполненных молекулярных орбиталях (ВЗМО) и на нижних свободных молекулярных орбиталях (НСМО), максимальный и минимальный заряды на атомах. [c.289]

    Позже эту реакцию изучали [4—8] в присутствии /г-толуолсуль-фокислоты в качестве катализатора при температурах, близких к т.кип. феиола (185°С). Экстракция реакционной смеси пиридином показала, что уголь деиолимеризуется на 90% молекулярная масса полученных мономеров равна 312. Для углей с более высоким содержанием углерода (70—93%) молекулярная масса продуктов деполимеризации возрастала от 300 до 1000 и более. Выход вещества, растворимого в пиридине, приближался к 100% для низко- и среднеуглеродистых углей и резко падал в случае углей с высоким содержанием углерода. [c.309]

    Строение полученных нами оксиэтилпроизводных сульфонов подтверждено ИК- и ПМР-спектрами. В ИК-спектрах этих соединений имеются полосы поглощения, характерные для первичных спиртов (1000—1075 и 3230—3670 см- ) и сульфонов(1120—1160 1300—1350 см ). В спектрах ПМР моно-, бис-и трис(Р-оксиэтил)-(1) в растворе ацетона все протоны, находящиеся у углеродов в кольце, проявляются одним триплетом. В пиридиновых растворах эти протоны в спектрах ПМР не проявляются, по-видимому, из-за взаимодействия с растворителем. Молекулярные веса этих соединений, определенные методом ЯМР в растворе пиридина с тоет.-бутиловым спиртом в качестве стандарта, согласуются с расчетными. [c.210]

    В серии опубликованных работ [25—30] приведены результаты систематических исследований по выяснению влияния различных факторов на направление и скорость протекания реакций химической модификации концентратов асфальтенов, полученных из вакуумных нефтяных остатков по процессу Добен . Оптимизация процессов аминирования с использованием в качестве аминирующих агентов триалкиламинов (метил-, этил-и бутил-) и пиридина позволила получить высокие выходы нерастворимых сильноосновных анионитов (84—90%). При этом было показано, что с уменьшением молекулярных весов, с уменьшением содержания гетероатомов и с повышением степени конденсированности в исходных асфальтитах ускоряется реакция аминирования. Повышается скорость аминирования и с увеличением полярности растворителей. [c.262]

    Выделение п-ксилола с помощью клатратных соединений. В последние годы был открыт класс неорганических комплексных соединений, которые способны образовывать молекулярные соединения с углеводородами [105]. Они получили название клатратных соединений [106]. Наиболее пригодны для образования клатратных соединений с углеводородами комплексы общей формулы МР4Х2, где М — элемент переменной валентности Р — пиридиновый остаток X — анион. Из ионов металлов наилучпше результаты дают двухвалентные никель, кобальт, марганец и железо. Наиболее пригодные азотистые основания — замещенные в 3- или 4-положении пиридины, а также хинолины. Анионом может быть простой одноатомный ион — хлор или бром, или многоатомный ион — тиоцианат, формиат, цианат, или нитрат [76, с. 235—298, 107]. [c.129]

    В растворителе с большой диэлектрической постоянной (для пиридина е = 12,3) значения молекулярных масс зависят от концентрации (рис. 9). Экстраполяция данных, полученных в пиридине, на бесконечное разбавление, дает значение 18O0, что соизмеримо со значением, полученным в нитробензоле [303] криоскопиче-ски и эбулиоскопически [305] (табл. 36). [c.151]

    При действии хлористого сульфурила на крахмал в разбавленном растворе щелочи [311] получается смесь соединений, содержащих небольшие количества серы. Молекулярные веса этих веществ свидетельствуют о глубокой деградации молекулы крахмала. Обработка хлорсульфоновой кислотой в пиридине ведет к образованию кислого сульфата крахмала [312], из которого выделена калиевая соль, имеющая состав СвНд05(80зК)2 2,бНзО. [c.56]

    Анализ адсорбционных смол. Адсорбционные смолы и выделенные из них к1 слородные соединения анализируют известными физико-химическими, хроматографическими и спектральными методами. Определяют плотность, показатель преломления, йодное число, элементарный состав средний молекулярный вес, функциональные группы фенольные — бромид-броматным методом [27] карбоксильные и сложноэфирные — титрованием по фенолфталеину карбонильные — с помощью солянокислого гидроксиламина [28] гидроксильные — методом гидрохлорирования или ацетилирования в пиридине [29]. Поскольку адсорбционные смолы имеют темный цвет, для их анализа предпочтительнее пользоваться потенциометрическим титрованием. На основании полученных данных можно с достаточной для дальнейшей работы точностью рассчитать групповой состав кислородных соединений. [c.230]

    Пользуясь формулой (111.17), можно найти величину и, зная из опытных данных pZ , определить стерический фактор реакции. Так, для рассмотренного случая молекулярный вес пиридина УИд = 79, плотность рд = 0,93 г1см молекулярный вес иодистого метила /Иц = 142, плотность рц = 2,28 г см . Приведенный молекулярный вес [c.82]

    Измерения предельного напряжения сдвига и скорости сдвига показали, что прядение зависит от тиксотропных свойств пеков. Было установлено, что реологические свойства мезофазнЕлх пеков связаны не только с содержанием веществ, нерастворимых в пиридине (хинолине), но и с распределением относительных молекулярных масс в этих фракциях пека. [c.609]

    Неполярное молекулярное вещество /j. По нескольку кристаллов иод добавляют в пробирки с тетрахлоридом углерода, бензолом, пиридином н разб. раствором NaOH отмечают окрасл/ растворов. [c.509]

    Размер пор молекулярных сит СаА почти совпадает с размером поперечного сечения цепочек углеводородов нормального строения они не адсорбируют углеводородов изостроения и циклостроения. Цеолиты СаХ адсорбируют не только нормальные парафиновые углеводороды, но и изо-парафиновые, нафтеновые, ароматические углеводороды, нафталин, хинолин, тиофен, пиридин и их производ-ньге. Ошг ке поглощают сложных конденсированных ароматических углеводородов. У цеолитов МаХ поры довольно велики 8—10 А. Они обладают большим сродством к неполярным и ненасыщенным соединениям. Применяются для разделения углеводородов свыше Св- [c.90]

    По данным изучения свойств раствора бромида алюминия в диэтиловом эфире и пиридине молекулярная масса этого вещества соответствует формуле А1Вгз, а в сероуглероде молекулярная масса в 2 раза больше. Сформулируйте на основании этой информации задачу, предложите решить ее Вашим товарищам и объяснить причину столь различного поведения бромида алюминия в различных растворителях. [c.182]

    При записи формул координационных соединений со сложными молекулярными лигандами часто используют сокращения этилен-диамин — Еп, пиридин — Ру, этилендиаминтетрауксусная кислота — ЭДТА, трифенилфосфин РЬзР и т. п. [c.226]

    Из этпх данных следует, что с повышением силы кислот и оснований увеличивается полярность образованного соединения. Так, полярность связей молекулярных соединений кислот с пиридином возрастет от (и = 2,93 для уксусной кнслоты до р, = 4,07 для монохлоруксусной и до = 10,1 для трихлоруксусной. [c.253]

    Примером крупного кластера является описанный выше комплекс Аи55(РРНз) 2С1б с молекулярной массой около 14 000. Вдоль его диаметра размещается около четырех атомов Аи, поэтому 8 (т. е. 2 ) атомов Аи является внутренними. Значительная часть поверхностных атомов экранирована фенильными группами и не связана с донорными атомами лигандов. Растворы этого соединения в пиридине ведут себя как коллоидные. В ходе ультрацентрифугирования происходит их седиментация. [c.144]


Смотреть страницы где упоминается термин Молекулярная пиридина: [c.29]    [c.92]    [c.29]    [c.175]    [c.178]    [c.183]    [c.128]    [c.372]    [c.58]    [c.76]    [c.35]    [c.54]    [c.56]    [c.610]    [c.73]    [c.317]    [c.218]   
Курс современной органической химии (1999) -- [ c.698 ]




ПОИСК





Смотрите так же термины и статьи:

Пиридин молекулярная диаграмма

Пиридин молекулярные орбитали

Пиридина молекулярные соединения



© 2025 chem21.info Реклама на сайте