Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения с частично ионной связью

    В заключение отметим, что несмотря на успехи теории кристаллического поля, связанные, в основном, с учетом симметрии, особенно для соединений с ионной связью, она ограничена. Опыты по электронному парамагнитному резонансу показывают, что вопреки теории кристаллического поля электронная плотность не сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. связь в координационных соединениях не ионная, а ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбиталей как более общую, чем электростатическая теория ионной связи. [c.125]


    Однако идеально ионных соединений вообще не существует, следовательно, истинной ионной связи тоже. Даже при химическом взаимодействии наиболе электроположительных и электроотрицательных элементов образуются соединения, в которых химическая связь не на 100% ионная. Поэтому в молекулах и кристаллах ионная связь должна рассматриваться как предельный случай частично ионной связи. Прежде всего об этом свидетельствуют [c.83]

    В меньшей мере доступны для молекул воды минеральные компоненты в форме комплексных гетерополярных производных гуминовых веществ. Последние образуются при совместном проявлении ионной или ковалентной и координационной связей между поливалентными ионами-комплексообразователями и молекулами гуминовых кислот. В данном случае ионная связь реализует обменное состояние, а координационная — дополнительную связь поливалентного катиона с функциональными группами типа —ОН, —СО, —Н. В случае адсорбционных образований гуминовых соединений торфа с нерастворимыми минеральными частицами функциональные группы органической составляющей частично взаимосвязаны с активными центрами минералов, и в целом эти соединения менее гидрофильны, чем отдельные их составляющие. [c.64]

    Однако идеально ионных соединений вообще не существует, а следовательно, истинной ионной связи тоже. Даже при химическом взаимодействии наиболее электроположительных и электроотрицательных элементов образуются соединения, в которых химическая связь не на 100% ионная. Поэтому в молекулах и кристаллах ионная связь должна рассматриваться как предельный случай частично ионной связи. Прежде всего об этом свидетельствуют экспериментальные данные по эффективным зарядам атомов, входящих в состав соединений. [c.63]

    Соединения с ионной связью (соли), образующие в твердом состоянии ионную кристаллическую решетку, при растворении в полярном растворителе диссоциируют на ионы. Подвергаются при растворении полной или частичной диссоциации кислоты и основания. При этом происходит заметное химическое взаимодействие ионов с растворителями. Каждый ион в растворителе, например в воде, окружен плотной сольватной оболочкой полярных молекул. Такая оболочка возникает в результате ион-дипольного взаимодействия. Проявляется сольватация, во-первых, в том, что растворение соли в HjO сопровождается уменьшением объема, и, во-вторых, выделением большого количества тепла. Это видно из значений ЛЯ, когда ион из газовой фазы переводится в водный раствор (ЛЯ = АЯр-, ДЯв кДж/моль)  [c.224]


    В ряду от хлора к иоду электроотрицательность элементов-галогенов уменьшается, поэтому в молекулах соединений состава Г—О—Н (Г — галоген) происходит смещение электронной пары химической связи к кислороду и формирование частично ионной связи I—О. Одновре- [c.148]

    При низшей валентности. равной 2 или 3, в бинарных соединениях типа галидов или оксидов проявляется преимущественно ионный тип связи. При валентности 4 и выше соединения частично образованы за счет полярной связи, а главным образом за счет ковалентной связи. [c.431]

    Вообще металлорганические соединения можно рассматривать как состоящие из карбаниона и катиона соответствующего металла, соединенных частичной ковалентной связью, которая тем ближе к ионной, чем меньше эффективная электроотрицательность металла. Это видно из резонансного способа записи соответствующего индукционного вза- [c.316]

    Как известно, атомы в соединениях склонны к об- разованию заполненных электронных оболочек. В на-и шем случае (с водой) это означает, что оба электрона связи водорода притянуты к кислороду, который более электроотрицателен. Но речь здесь идет не о полной ионизации, а о смещении центра тяжести заряда, когда образуется соединение частично ионного характера. В результате молекулы воды приобретают свойства электрического диполя с отрицательным концом на атоме кислорода, а положительным — на атомах водорода. Эта особенность имеет огромное практическое значение, так как многие по сравнению с другими жидкостями необычные свойства воды обусловлены природой диполя. Так, молекулы воды легко образуют тетраэдрическую структуру. Это упорядочение, которое усиливается ниже 4°С, объясняет, почему вода обладает минимальной плотностью при 4°С, а пористость молекулярной структуры льда примерно на 10% больше, чем у жидкой воды. Большое внешнее давление не препятствует увеличению объема при замерзании — в этом с досадой убеждаются шоферы, поглядев на размороженный мотор или радиатор. Воспроизведем этот процесс пузырек из-под лекарства до краев наполним водой, плотно закроем завинчивающейся крышкой и поставим на мороз или в морозильник. [c.18]

    Однако в природе идеально ионных соединений практически не существует. Поэтому в молекулах и кристаллах ионная связь рассматривается как предельный случай частично ионной связи. Сказанное в полной мере относится и к ферритам. Об этом свидетельствуют следующие факты. Рассмотрим их на примере ферритов со структурой шпинели. [c.11]

    Бинарные соединения. В большинстве бинарных соединений (табл. 19.7) фосфор образует ковалентные связи с атомами других элементов. Частично ионные связи существуют только в некоторых солеобразных фосфидах. [c.428]

    СОЕДИНЕНИЯ С ЧАСТИЧНО ИОННОЙ СВЯЗЬЮ [c.90]

    Неравномерность распределения электронов между атомами в соединениях получила название окисленности. При этом элемент, электроны которого смещаются к атомам другого элемента (полностью в случае ионной связи или частично в случае полярной), проявляет положительную окисленность. Элемент, к атомам которого смещаются электроны атома другого элемента, проявляет отрицательную окисленность. [c.264]

    С математической точки зрения, простейшим типом химической связи будет тот, который можно считать чисто электростатическим. Хотя при этом связь можно считать частично ковалентной и частично ионной, степень ионности связи зависит от различия электроотрицательности соединившихся атомов. В общем, связь можно считать чисто ионной, если она отвечает электростатической модели. Такой подход оказался удачным для галогенидов щелочных металлов, у которых связь образуется между катионом сильно электроположительного атома и анионом электроотрицательного атома. Для них можно с достоверностью считать связи почти исключительно ионными. Однако проверка этого предположения будет зависеть от того, насколько успешно удастся количественно оценить различные свойства соответствующих соединений. [c.135]

    Ионную связь можно рассматривать как предельную полярную химическую связь, для которой эффективный заряд атома близок к единице. В то же время для неполярной ковалентной связи эффективный заряд атомов равен нулю. Химическая связь большинства соединений является полярной, т. е. имеет промежуточный характер между неполярной ковалентной и ионной связями. Можно сказать, что такая ковалентная связь имеет частично ионный характер. Долю ионного характера связи называют степенью ионности, которая количественно характеризуется эффективными зарядами атомов в молекуле. Например, степень ионности молекул H I и LiF равна 0,17 и 0,9 соответственно. Поэтому указанным соединениям присущи и ковалентная и ионная связи. Степень ионности связи возрастает с увеличением разности электроотрицательности образующих ее атомов (рис. II.2). [c.35]

    Как и в случае реакции в углеводородной среде, движушей силой этого процесса является возможность образования более прочной (частично ионной) связи А1—ОСО вместо ковалентной связи А1—С. В отличие от взаимодействия в углеводородной среде присутствие комплексообразующсго соединения (полярного мономера) меняет характер протекания этого процесса. Образование ко >.1плекса приводит к разрушению мостиковых связей в алюми-нийалкиле, в результате чего при последующей реакции с перекисью бензоила создаются условия для выхода в реакционный объем бензоатных радикалов. В данном случае происходит взаимодействие между одной молекулой алкилалюминия и молекулой перекиси, что отвечает стехиометрической зависимости, установленной для компонентов инициирующей системы в процессе полимеризации з. Уменьшение электронной недостаточности алюминия в комплексе [А1(Е1)з-М] за счет смещения электронной плотности от атомов азота нли кислорода приводит к замедлению реакции с перекисью бензоила по сравнению с реакцией в углеводородной среде. Это создает условия для полного использования радикалов в процессе полимеризации. [c.260]


    Однако реакционная способность веществ, содержащих одни и те же элементы в одинаковом валентном состоянии, совершенноразличная. Поэтому в химии введено понятие о степени окисления, характеризующей состояние элемента в соединениях. Степень окисления выражается числом частично или полностью смещенных электронов в соединениях от одного атома к другому. Это число названо окислительным числом. В простых веществах отсутствует какое-либо смещение электронов в сторону того или иного атома. Поэтому степень окисления элементов в этом случае равна 0. Степень окисления элемента, от атома которого частично или полностью оттягиваются электроны, считается положительной Степень окисления элемента, к атомам которого электроны притягиваются, считается отрицательной. Легко понять, что в соединениях с ионной связью степень окисления элемента совпадает с зарядом иона. Степень окисления обозначается арабской цифрой со знаком + или — и ставится над символом знак при окислительном числе в отличие от заряда иона ставится перед цифрой. Окислительное число кислорода в большинстве соединений равно —2, водорода в соединениях с большинством неметаллических элементов +1. Пользуясь этими данными, можно-определить окислительное число элементов в указанных выше двух рядах соединений  [c.61]

    Создание количественной характеристики ионности химических связей, по нашему мнению,— централыная задача теории сегодняшнего дня, так как именно с помощью полярных (т. е. частично ионных) связей построено подавляющее большинство химических веществ. В самом деле, металлическая связь реализована в нескольких сотнях чистых металлов и интерметаллических соединений чисто ковалентных молекул (типа АА) не может быть больше, чем сортов атомов в периодической системе, а к идеально ионным веществам с известным приближением можно отнести лишь некоторые кристаллические щелочные галогениды —фториды калия, рубидия, цезия и франция. Следовательно, представителей К райних типов химической связи ие больше тысячи, а все остальные миллионы химических соединений содержат частично ионные связи. [c.4]

    Как указывалось в 34, атомы неметаллов характеризуются положительными значениями сродства к электрону при присоединении электрона к такому атому выделяется энергия. Однако присоединение второго электрона к атому любого неметалла требует затраты энергии, так что образование простых многозарядных анионов (например, 0 , N -) оказывается энергетически невыгодным. Поэтому в таких соединениях как оксиды (ВаО, А1пОз и др.) или сульфиды (например, 2пЗ, СиВ) не образуется чисто ионная связь здесь химическая связь всегда носит частично ковалентный характер. Вместе с тем, многозарядные сложные анионы (ЗО , СОз, РОГ и т. п.) могут быть энергетически устойчивыми, поскольку избыточные электроны распределены между несколькими атомами, так что эффективный заряд каждого из атомов не превышает заряда электрона. [c.151]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Существуют вещества, в кристаллах которых значительную роль играют несколько видов взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентными связями локализованного и делокализованного характера, а в других — межмолекулярной связью. Поэтому решетку графита можно рассматривать и как атомную, и как металлическую, и как молекулярную. Во многих неорганических соединениях, например, в ВеО, ZnS, u l, связь между частицами, находящимися в узлах решетки, является частично ионной и частично ковалентной решетки подобных соединений можно рассматривать как промежуточные между ионными и атомными. [c.161]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]

    Структура неорганических веществ отличается большим многообразием в зависимости от природы и числа частиц, входящих в кристаллическую решетку. При этом частицы одного вида соединяются друг с другом посредством металлической связи (элементы левой части таблицы Д. И. Менделеева), ковалентной связи с образованием полимерного каркаса (элементы середины таблицы), связи частично ионной и частично ковалентной (некоторые элементы П1, IV и V групп таблицы Д. И. Менделеева), ковалентной связи с образованием отдельных молекул и ван-дер-ваальсовых сил между этими молекулами. При наличии в составе соединения частиц двух видов связь между ними может быть ионной или близкой к ней при значительной разности электроотрицательностей между элементами (фториды, хлориды, ряд оксидов) при малой разности электроотрицательностей — преимущественно ковалентной (SO2, СО т. д.), а также связью, сочетающей признаки и ионной, и ковалентной (большинство оксидов, карбиды, нитриды, бо-риды, силициды). При наличии же в составе соединения трех и более элементов картина может быть еще более сложной. Отдельные элементы за счет преимущественно ковалентной связи между ними могут образовать самостоятельные структурные группировки — радикалы типа SO42-, Si04 -, А104 и т. д., остальные же элементы вследствие передачи своих электронов этим радикалам могут связываться с ними посредством преимущественно ионной связи (Na+, Са2+, АР+ и т. д.). Более того, могут возникать группировки в виде цепей, лент, слоев и даже каркасов, имеющих заряды, равномерно локализованные по фрагментам этих группировок, связанных друг с другом через катионы металлов. Б случае же незаряженных структурных единиц, например слоев у некоторых глинистых минералов, связь между слоями является ван-дер-ваальсо-вой, или водородной. [c.25]

    Как уже указывалось, оксид водорода — вода HjO — сам способен к процессам частичной диссоциации 2H204==Hj0+-(-0fI-. Естественно предположить, что водородные соединения элементов IV—V групп будут менее склонны к диссоциации, и в водных растворах всегда будет присутствовать более диссоциированное по связи Э—Н (т. е. С—Н, N—Н, Р—Н) соединение — вода. И действительно, соединения элементов IV—V групп с металлами, в которых имеются ионные связи Э — металл, разрушаются водой, проявляющей в данном случае роль сильной кислоты по отношению к соответствующим водородным соединениям и их анионам  [c.233]

    Названия соединений двух элементов, образованных ионной или полярной ковалентной связью, составляются, как правило, из двух слов. Первое из них — корень латинского названия элемента, являющегося электроотрицательной частью соединения, с добавлением суффикса ид, а второе — русское название элемента, являющегося электроположительной частью соединения, в родительном падеже. Например, SnS — соединение с частично ионной, частично ковалентной связью. В нем олово является электроположительной, а сера — электроотрицательной частью соединения. Латинское название серы — sulfur, корень этого слова suif. Следовательно, название SnS — сульфид олова. [c.30]

    Общие химические свойства кремния и германия определяются положением этих элементов в таблице Менделеева. Кремний и германий находятся в четвертой группе таблицы, располагаясь соответственно в третьем и четвертом периодах. Во всех своих соединениях кремний и германий выступают как четырех- или двухвалентные элементы. При умеренных температурах (до 700 " К) и в особенности во влажных средах они образуют, как правило, четьЕрехвалентные соединения. Наоборот, нри высоких температурах (порядка 1300 " К) и в сухой атмосфере более типичными являются двухвалентные соединения рассматриваемых элементов. Химические связи в соединениях кремния и германия с элементами крайних групп таблицы Менделеева — полярные и обладают существенным дипольным моментом. Типичным для таких соединений является их взаимодействие с полярными молекулами других веществ и, в первую очередь, с молекулами воды. Соединения с чисто ионной связью для кремния и германия не известны. Следует, однако, иметь в виду, что некоторые полярные соединения рассматриваемых элементов могут частично диссоциировать на соответствующие положительные и отрицательные ионы. [c.92]

    Как и следует ожидать, бериллий, ядро которого слабо экранировано, заметно отличается от остальных элементов этой подгруппы. Его атом имеет малый радиус, наименьшее число электронов и отсюда большой потенциал ионизации, что обусловливает преимущественно ковалентный характер соединений этого элемента. Частично ионный характер имеют связи в оксиде бериллия ВеО — высокоплавящемся и нелетучем соединении. [c.154]

    Проявление свободными металлами только восстановительных свойств объясняется способностью их атомов терять полностью или частично валентные электроны. При этом образуются ионные связи или ковалентные полярные связи в соединениях, где атомы металлов имеют положительные значения о. ч. Восстановительная активность металлов проявляется по-разному. Мера ее для свободных атомов металлов — потенциал ионизации / (гл. II, 2), а в водных растворах— электродный потенциал ф (см. гл. VIII, 1). Самыми энергичными восстановителями в соответствии со значениями / и ф являются щелочные металлы, самыми пассивными — переходные металлы VI периода. [c.181]


Смотреть страницы где упоминается термин Соединения с частично ионной связью: [c.309]    [c.61]    [c.36]    [c.37]    [c.61]    [c.283]    [c.71]    [c.153]    [c.161]    [c.269]    [c.72]    [c.413]    [c.118]    [c.41]    [c.288]   
Смотреть главы в:

Химическая структура и реакционная способность твердых веществ -> Соединения с частично ионной связью




ПОИСК





Смотрите так же термины и статьи:

ИОНЫ И ИОННЫЕ СОЕДИНЕНИЯ

Ион ионы связи

Ионная связь

Ионные связи ионные соединения

Соединение ионов

Соединения ионные

Соединения с ионными связями



© 2025 chem21.info Реклама на сайте