Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия молекулярная в пористых катализаторах

    Диффузия в пористых катализаторах. Перепое компонентов реакционной смеси внутри гранулы катализатора осуществляется главным образом посредством диффузии. Интенсивность диффузии внутри гранулы зависит от фазового состояния и состава реакционной смеси, физических свойств компонентов, составляющих реакционную смесь, строения пористой структуры катализатора, температуры и давления каталитического процесса. При изучении диффузии внутри пористого катализатора прежде всего необ.хо-димо учитывать влияние строения пористой структуры на интенсивность диффузии. Пористость катализатора, размер пор, их извилистость, форма и взаимное расположение — основные свойства пористой структуры, оказывающие влияние на интенсивность диффузии компонентов реакционной смеси внутри гранулы катализатора. Пористость катализатора, равная объему свободного пространства в единице объема пористой массы, определяет долю сечения гранулы катализатора, доступную для диффузии. Извилистость пор характеризует увеличение среднего пути диффузии, относительно длины в направлении, перпендикулярном внешней поверхности гранулы. Размер пор определяет механизм диффузии реагентов внутри пористой массы катализатора, если реакционная смесь является газофазной. При диффузии газов в порах молекулы каждого компонента реакционной смеси испытывают сопротивление своему движению в результате столкновения с молекулами других компонентов и с поверхностью пор. Если размер поры значительно превосходит длину среднего свободного пробега молекул газа, то число взаимных столкновений между молекулами будет значительно больше числа столкновений молекул с поверхностью поры. Перенос вещества будет протекать по закону молекулярной диффузии в свободном пространстве. Если размер пор значительно меньше длины среднего свободного пробега молекул газа, то молекулы сталкиваются преимущественно со стенками пор и каждая молекула двигается независимо от остальных. Такая диффузия называется кнудсеновской. В случае, когда длина среднего свободного пробега молекул газа соизмерима с размером пор, имеет место переходный режим диффузии. На режим диффузии жидкостей размер пор не оказывает влияния пока не становится соизмеримым с размером молекул жидкости. [c.60]


    Эффективный коэффициент диффузии />эф = П/) был определен выше [см. уравнение (2.101)]. Если учесть переходный вид диффузии в порах, то Z) в порах меньше молекулярного коэффициента диффузии D [уравнение (2.103)]. Примем />эф = 0,1Д Теплопроводность пористого катализатора по данным многочисленных исследований Хз 10Х, где X - теплопроводность заполняющего поры газа. Такой результат связан с тем, что структура пористого катализатора образована спекшимися, слипшимися микрочастицами. Точки контакта оказывают большое термическое сопротивление, и в переносе теплоты участвует прослойка газа, примыкающая к точкам контакта микрочастиц. Этим и объясняется тот факт, что теплопроводность пористого тела зависит в основном от теплопроводности заполняющего его газа и в значительно меньшей степени зависит от [c.98]

    В пористом катализаторе перенос тепла осуществляется как с помощью молекулярного теплопереноса в порах, так и за счет теплопроводности самого катализатора. В газах коэффициент молекулярной теплопроводности Хм примерно равен коэффициенту молекулярной диффузии умноженному на теплоемкость единицы объема газа Y. Эффективный коэффициент теплопроводности пористой частицы можно представить формулой [c.102]

    Молекулярная диффузия в пористых катализаторах. В пористых телах молекулярная диффузия, аналогичная молекулярной диффузии в объеме, наблюдается только для систем с крупными порами при относительно высокой плотности газа и в тех случаях, когда поры полностью заполнены жидкостью. [c.153]

    МОЛЕКУЛЯРНАЯ ДИФФУЗИЯ В ПОРИСТЫХ КАТАЛИЗАТОРАХ [c.42]

    Закономерности массопередачи внутри пористого твердого-зерна значительно сложнее, чем при простой молекулярной диффузии. Внутренняя поверхность катализатора, образуемая стенками пор и капилляров, определяется их размерами и зависит от способа приготовления катализатора. В крупнопористых катализаторах с 1000 А возможна лишь молекулярная диффузия, описываемая законами Фика. В узких порах с 1000 А, т. е. сравнимых с длиной свободного пробега молекул, механизм переноса вещества существенно изменяется — возникает так называемое кнудсеновское течение, при котором скорость переноса вещества снижается из-за столкновений молекул со стенками пор. В этом случае коэффициент диффузии прямо пропорционален радиусу пор  [c.185]

    Процесс переноса массы в пористых катализаторах анализировать значительно труднее, чем перенос теплоты. Это связано с тем, что помимо переноса за счет молекулярной диффузии в крупных порах имеет место кнудсеновский перенос в порах малого диаметра, причем оба типа переноса сопровождаются локальными адсорбционно-десорбционными процессами. Перенос массы в крупных порах, диаметр которых много больше длины свободного пробега молекул, хорошо описывается уравнением молекулярной диффузии. Массоперенос в порах, диаметр которых сравним с длиной свободного пробега молекул, определяется кнудсеновской диффузией. Разница между коэффициентами молекулярной и кнудсеновской диффузии может достигать двух порядков. Так, например, экспериментально определенный коэффициент кнудсеновской диффузии окиси углерода в катализаторе в процессе окисления СО в избытке кислорода при 300 °С имеет величину 0,0088 см с, а коэффициент молекулярной диффузии для пор, радиус которых превышает 0,1 мкм, в этих условиях достигает 0,52 см /с [1]. Попытки вывести формулы для определения эффективных коэффициентов диффузии в пористых катализаторах на основе коэффициентов молекулярной и кнудсеновской диффузии с учетом распределения пор по диаметрам не привели к успеху, так как не удается учесть влияние извилистости пор и степень влияния непроточных пор на средний коэффициент переноса. Кроме того, процессы молекулярной и кнудсеновской диффузии в порах сопровождаются локальными адсорбционно-десорбционными процессами, которые снижают величину эффективного коэффициента переноса. [c.68]


    Массо- и теплопередача в порах. Наиболее важное значение в процессах гетерогенного катализа имеет перенос вещества и тепла внутри пористой частицы катализатора. Перенос вещества в порах осуществляется исключительно путем молекулярной диффузии. Если диаметр поры значительно превышает среднюю длину свободного пробега, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как в объеме неподвижной жидкости или газа и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика - [c.98]

    Для катализаторов коэффициент диффузии Цф в 5-10 раз меньше, чем в порах который в свою очередь меньше молекулярного коэффициента диффузии. Теплопроводность А. пористых катализаторов примерно в 10 раз больше, чем у газа [101]. Поскольку для газов О к/ср, то Ад в 50-100 раз меньше ДО д. Учитывая, что ДО для большинства процессов меняется в пределах 3 30, то очевидно, что зерно катализатора в большинстве случаев можно считать изотерми- [c.59]

    Явления внутридиффузионного торможения связаны с пористой структурой катализаторов. Следует различать два типа диффузии — молекулярную и кнудсеновскую. Первый тип диффузии характерен для крупных пор, размеры которых превышают среднюю длину свободного пробега молекул. Поскольку длина свободного пробега обратно пропорциональна давлению, то чем больше давление, тем меньше скорость диффузии, т. е. тем труднее молекулам достигнуть внутренней поверхности катализатора. [c.95]

    Катализаторы обычно представляют собой монолитные пористые тела. Для них можно ожидать более высоких значений коэффициентов извилистости, чем для насыпных слоев. На рис. 1-5 и в табл. 1,6 представлены полученные различными исследователями данные о молекулярной диффузии в гранулах катализаторов. [c.44]

    В процессе, идущем на пористом катализаторе, наряду с диффузионным сопротивлением переносу реагентов внутрь зерна могут возникнуть и затруднения с отводом тепла реакции. Перенос тепла в зерне идет по двум механизмам 1) за счет теплопроводности твердой пористой частицы и 2) вследствие молекулярной диффузии в порах. Суммарное действие обоих механизмов описывается эффективным коэффициентом теплопроводности X. Если материал пористого зерна хорошо проводит тепло, частица катализатора при всех условиях остается изотермической. В случае же малой теплопроводности катализатора механизм тепло- и массопереноса в зерне один и тот же, и надо ожидать одновременного появления градиентов концентраций и температур в частице по мере перехода реакции во внутридиффузионную область. [c.143]

    Явления внутридиффузионного торможения связаны с пористой структурой катализаторов. Следует различать два типа диффузии — молекулярную и кнудсеновскую. Первый тип диффузии характерен для крупных пор, размеры которых превышают среднюю длину свободного пробега молекул. Поскольку длина свободного пробега обратно пропорциональна давлению, то чем больше давление, тем меньше скорость диффузии, т. е. тем труднее молекулам достигнуть внутренней поверхности катализатора. Кнудсеновская диффузия протекает в тонких порах, причем коэффициент диффузии снижается прямо пропорционально уменьшению диаметра капилляра. Особое значение этот тип диффузии имеет для процессов, проходящих при низких давлениях, а под давлением около 300 ат она становится заметной лишь в порах размером порядка 10 А. [c.45]

    В этом отношении характерно влияние температуры на протекание гетерогенного процесса в системе Г —Т (пористый катализатор). При низких температурах, как правило, процесс лимитируется скоростью химической реакции. Скорость подвода вещества к внешней и внутренней поверхности раздела фаз (кривые 3 и 2 в зоне I на рис. 5.10) может существенно превосходить скорость химической реакции (кривая 1 в зоне /). С ростом температуры константа скорости химической реакции растет по экспоненциальному закону с показателем степени от 0,5 (для кнудсеновской диффузии) до 1,8 (для молекулярной диффузии), Коэффициент конвективной диффузии и ее скорость при подводе реагентов к внешней поверхности катализатора практически не зависят от температуры (линия 3). Таким образом, темп роста константы скорости реакции существенно выше, чем увеличение коэффициентов диффузии. А это означает, что при некоторой температуре стадия внутренней диффузии станет более медленной по сравнению с химической реакцией и процесс перейдет постепенно во внутридиффузионную область, а его скорость будет ограничиваться скоростью внутренней диффузии (кривая 2 в зоне II). [c.86]


    Пористый катализатор обладает поверхностью по БЭТ, равной 131 mVf, пористостью 0,39 см /см и объемной плотностью 1,47 г/см . Значения вязкости газа и коэффициента молекулярной диффузии D следует найти по теоретическим уравнениям, основанным на потенциальной функции Леннарда—Джонса. Константы e/fe и 0 для водорода соответственно равны 33,3 К и 2,968-lO s см. Коэффициент извилистости для диффузии в порах катализатора примерно составляет 4,0. [c.284]

    В жидкостях величины коэффициентов молекулярной диффузии на несколько порядков ниже, чем в газах. Медленность молекулярной диффузии в жидкостях сильно ограничивает возможность применения пористых катализаторов для проведения жидкофазных реакций. [c.99]

    Для каждого процесса может быть подобрана некоторая оптимальная пористая структура зерен катализатора, определяемая соотношением скоростей химических превращений и диффузий веществ, участвующих в данном процессе. Для реакций с участием веществ малого молекулярного веса, ведущих в условиях реакции к стабильным целевым продуктам, целесообразно применять катализаторы с большой удельной поверхностью и, следовательно, с сильно развитой системой пор малого диаметра. Повышение молекулярного веса реагентов или продуктов реакции приводит к понижению скорости их диффузии, вследствие чего для проведения быстрых реакций требуются более широкопористые катализаторы, поверхность которых обычно невелика. [c.175]

    Уравнение (III. 12) имеет большое практическое значение для оценки скорости движения фронта диффундирующего вещества. Основанное на общих положениях молекулярно-кинетической теории, оно может быть использовано для любых (сферических, не заряженных, не сольватированных и не взаимодействующих) диффундирующих частиц молекул газа и растворенных веществ, коллоидных частиц, например, для оценки диффузии газов через пористые поглотители или катализаторы. Время прохождения фронтом газа пути I (соответствующего Ах) ориентировочно определяется как  [c.34]

    Повышение молекулярного веса реагентов или продуктов реакции приводит к понижению скорости их диффузии, вследствие чего для проведения быстрых реакций требуются более широкопористые катализаторы, поверхность которых обычно невелика. Таковы реакции полимеризации этилена и пропилена и алкилирования бензола на катализаторе из кремневольфрамовой кислоты на силикагеле, скорость которых растет с увеличением среднего диаметра пор силикагеля [4. Обычно для таких процессов хорошо подходят катализаторы и носители средней пористости, величина удельной поверхности которых колеблется от нескольких десятков до 100 м г и более, а преобладающий диаметр пор от 40—60 до 100 А. При этом, как указывает Г. К. Боресков [5], очень желательна неоднородность структуры пористой частицы (наличие широких- транспортных пор, ведущих к узким капиллярам с развитой поверхностью). Особо чувствительны к характеру пористости частиц реакции контактного окисления. В этом случае скорости реакций, как правило, велики, а целевые продукты термодинамически неустойчивы в условиях реакции. Это приводит к тому, что при появлении внутридиффузионного торможения усиливается дальнейшее окисление целевого продукта и селективность процесса падает. Наилучшие катализаторы реакций окисления обычно являются [c.305]

    Можно было бы предположить, что водорастворимые органические полимеры должны быть особенно пригодными для введения с целью повышения пористости или по крайней мере создания сетки тонких каналов, способствующих увеличению скорости диффузии реагирующих веществ при их проникновении внутрь катализатора. Однако поведение таких полимерных веществ оказывается не столь простым. Большинство полимеров не образует молекулярные однородные растворы ни с растворимыми силикатами, ни с коллоидным кремнеземом. По-видимому, разделение фаз имеет место на микроуровне, особенно в процессе гелеобразования. Обычным явлением оказывается то, что после удаления полимера из высушенного геля его остатки либо сохраняются в более или менее изолированных полостях, либо оказываются способными прерывать [c.720]

    Предпринимались попытки определить коэффициент извилистости и с помощью глобулярных моделей. Методом усреднения траекторий молекул вокруг шаров при молекулярной диффузии было получено соотношение р = 1 — (4 — я) (1 — е) /п. Для кнудсеновской диффузии авторами [124] было предложена зависимость Р = л/з/е- Используя вариационный метод двойственных оценок с помощью модели хаотично расположенных сфер, автор [125] получил верхнюю оценку коэффициента диффузионной проницаемости для молекулярной диффузии /7 = е/( 1 — 0,5 1п е). Сравнение экспериментальных данных с правой частью этого соотношения показало эффективность оценки. Из изложенного следует, что коэффициенты извилистости и КДП, определенные различными методами, обусловливаются моделью пористой структуры, которая используется для рассмотрения диффузии в пористых катализаторах. Тем не менее можно говорить о том, что теоретические методы позволяют получить правильную качественную оценку для этих коэффициентов. С достаточным основанием можно считать, что КДП является нелинейной функцией пористости вида П — г1(г). Обработка опубликованных в литературе экспериментальных данных позволила оценить интервалы изменения КДП промышленных катализаторов 0,25е < Я < е/(1 — 0,51пе) 0,1е < Якн < 0,5е и средние значения Ям = 0,5е, Лкн = 0,25е. Различие средних оценок и интервалов изменения КДП можно считать согласием с выводом о различии КДП для разных режи- [c.165]

    В бидисперсных структурах, состоящих из мелких плотных частиц и соединенных в более крупные пористые частицы, наблюдается высокая активность катализатора. Г. К. Боресков отмечает, что преимущество такой структуры (бидисперсной) заключается в том, что степень использования вторичных частиц близка к единице, так как их размер мал. Степень использования всего зерна возрастает благодаря молекулярному характеру диффузии в крупных порах меноду вторичными частицами. Переход к бидисперсным структурам позволяет увеличить активность катализатора в 5-8 раз . [c.652]

    Пропорциональность коэффициента диффузии диаметру капилляра является следствием активной роли стенок в процессе массопереноса. Границы кнудсеновской области зависят от давления при обычных давлениях преимущественная роль кнудсеновской диффузии выявляется при диаметре пор меньше 10 А с повышением давления эта граница, вследствие уменьшения длины свободного пробега, сдвигается в сторону меньших диаметров. Перенос тепла в пористой частице осуществляется как за счет молекулярной диффузии в порах, так и за счет теплопроводности самой частицы. Часто пористую частицу рассматривают как однородную среду, вводя эффективные коэффициенты диффузии и теплопроводности, определяемые экспериментально. Особенности макрокинетики процессов тормозящихся диффузией реагентов в порах катализатора, будут описаны в п. 3. , [c.117]

    После химического состава важнейшими факторами, определяющими активность и избирательность катализатора, являются величина его удельной поверхности и структура пор гранул. Для каждого процесса может быть подобрана некоторая оптимальная пористая структура зерен катализатора, определяемая соотнощением скоростей химических превращений и диффузии веществ, участвующих в данном процессе. Для реакций с участием веществ малого молекулярного веса, ведущих в условиях реакции к стабильным целевым продуктам, целесообразно применять катализаторы с большой удельной поверхностью и, следовательно, с сильно развитой системой пор малого диаметра. К числу таких катализаторов и носителей относятся, например, активированный уголь с удельной поверхностью 400—600 и диаметром пор 10—15 А, активная у-окись алюминия с удельной поверхностью порядка 200—250 и диаметром пор 20—30 А и ряд других. [c.305]

    Влияние пористой структуры катализатора паровой конверсии метана на производительность контакта. Активность нанесенных никелевых катализаторов зависит от температуры прокаливания глиноземного носителя. Эта зависимость проходит через максимум, что объясняется следующим. При испытании катализатора на проточно-циркуляционной установке конверсия метана протекает в кинетической области лишь при сравнительно низких температурах (300—400 С), а при температурах выше 800 С скорость реакции определяется процессом внутренней диффузии. В образцах катализатора, полученного на основе глиноземного носителя, прокаленного при 900° С, содержится значительное количество пор до 1000 А при относительно небольшом количестве транспортных пор. Такой пористой структуре катализатора в условиях конверсии метана соответствует режим кнудсеновской диффузии. Поскольку коэффициент диффузии при таком режиме меньше коэффициента молекулярной диффузии, то активность соответствующего катализатора оказывается ниже, чем у более крупнопористого образца, полученного на основе носи-теля, прокаленного при 1000° С, в порах которого осуществляется молекулярная диффузия. Дальнейшее увеличение температуры прокаливания чисто глиноземного носителя и связанное с этим отклонение пористой структуры контакта от оптимальной приводит к уменьшению его активности. Этим же объясняется отмеченное в производственных условиях снижение активности катализатора ГИАП-3 при увеличении температуры прокаливания его носителя до 1400° С. Повышение температуры прокаливания носителя, способствующее увеличению механической прочности и термостабильности катализатора, в сочетании с применением порообразую-щих добавок, одновременно стабилизирующих пористую структуру контакта, позволяет регулировать ее таким образом, что происходящее при этом улучшение его механических свойств не сопровождается существенным понижением активности контакта. [c.116]

    В связи с тем, что до настоящего времени нет надежных расчетных методов определения различных коэффициентов диффузии и относительных интенсивностей процессов переноса за счет механизмов молекулярной, кнудсеновской и поверхностной диффузии для реальных пористых катализаторов, основную роль в теории играют методы, использующие понятие эффективного коэффициента диффузии. Эффективный коэффициент диффузии находится в результате решения обратных задач, т. е. определяется из условия применимости уравнений диффузии и теплопроводности с учетом химических реакций для описания процессов тепло- и массопереноса в пористых катализаторах. В качестве единственного параметра, определяющего массоперенос, коэффициент эффективной диффузии имеет ряд недостатков. Наиболее существенный из них — неоднозначность определения. Так, если провести экспериментальное определение эффективного коэффициента диффузии для одного и того же пористого катализатора, используя различные уравнения переноса, например в одном случае уравнение диффузии без источников, а в другом случае уравнение с источниками, учитывающими хихмические превращения, то чаще всего получаются совершенно различные значения. [c.69]

    Заметим, что i = D Jb и Z) = о/),- (где —коэффициент молекулярной диффузии г-го вещества, б — толщина диффузионного пограничного слоя и а — коэффициент, зависящий от структуры пористого катализатора). Величины б и а можно с достатотаой степенью точности считать одинаковыми для всех веществ, участвующих в. реакции. Аналогично вьппёизложенному (см. раздел II 1.4), система уравнений (III.100) может быть сведена к единственному уравнению для концентрации одного из реагирующих веществ, которое принимают за ключевое. Введем с этой целью вспомогательную величину [c.131]

    Если линейный размер структурных элементов пористого тела настолько мал, что становится сопоставимым с длиной свободного пробега молекул (например, при кнудсеновской диффузии молекул газа в порах катализатора), то целесообразно применение так называемой модели пылевидного газа [55, 56], представляющей элементы твердого скелета пористого тела в виде тяжелых неподвижных макромолекул, способных рассеивать, адсорбировать и десорбировать молекулы газовой смеси. Иными словами, твердое вещество пористого материала формально рассматривается как равноправный компонент газовой смеси (пылевидный компонент) со своей концентрацией, молекулярной массой, парциальным давлением и т. п. Газовую смесь вместе с пылевидным компонентом называют псевдогазовой. В рамках модели пылевидного газа в принципе удается преодолеть основные трудности квази- [c.141]

    Применяя кaтaлизatopы в жидкой фазе, следует иметь в виду, что скорость некаталитических реакций в расчете на единицу реакционного объема в жидкостях в 10 — 10 раз больше, чем в газах, а коэффициент молекулярной диффузии в 10 — 10 меньше, чем в газах. Поэтому эффективность применения катализаторов в жидкой фазе [см. уравнение (П. 8)] меньше, чем в газ бвой. Применение катализаторов необходимо сопровождать интенсивным перемешиванием для снятия внешнедиффузионных торможений. Мелкопористые катализаторы неэффективны из-за сильного увеличения вязкости жидкостей в порах и соответствующего снижения коэффициентов диффузии [см. уравнение (П. 18)]. Для увеличения поверхности контакта в жидкой среде целесообразно применять мелкодисперсные не пористые катализаторы, однако при этом ухудшаются условия выделения катализатора (отстаивание, фильтрование, цен трифугирование) из жидкой массы после каталитического реактора. [c.53]

    НО И Времени. В этом случае при выводе уравнения, описывающего диффузионную модель, производится также усреднение по времени, что приводит к тому же, что и раньше, выражению для эффективного диффузионного члена с коэффициентом D, учитывающим, кроме извилистости направления движения потока, влияние турбулентных пульсаций. Молекулярная диффузия оказывает исчезающе слабое воздействие на перемешивание потока в слое твердых частиц, поэтому при усреднении по макрообъему диффузионным членом в (V. 1) можно пренебречь. Это обстоятельство приводит к тому, что значение эффективного коэффициента диффузии D одинаково для всех компонентов реакционной смеси. Наряду с эффективными коэффициентами переноса, в диффузионной модели вводятся эффективные скорости образования веществ rj, отнесенные к единице объема слоя. Если реакция идет на поверхности непористых частиц, Гг=ргСГ, где О — площздь внвшней поверхности частиц катализатора в единице объема слоя. В процессе на пористом катализаторе Г = — е)г, где г —эффективная скорость образования г-го вещества, отнесенная к единице объема зерна (с учетом диффузионного торможения реакции, см. гл. П1). Уравнение материального баланса, описывающее поле концентраций 1-го вещества в реакторе, принимает, таким образом, вид [c.186]

    Диффузия в переходной области. Часто пористую структуру катализатора представляют в виде системы капилляра радиуса г. Характер диффузии зависит от радиуса капилляра г и длины свободного пробега молекул Х. В зависимости от соотношения между г и Л обычно принимают молекулярную г 10Я), кнудсеновскую (г< 0,1Я) и переходную (0,1 1 < г< ЮХ) области. Кроме того, для тонконористых систем большой вклад в общий поток может [c.154]

    Зерна катализатора, как правило, пронизаны сложной системой весьма топких пор, на внутренней поверхности которых и протекают химические реакции. Внутренняя поверхность катализатора значительно превышает наружную поверхность, обычный ее порядок 10 —10 мУг. Радиус пор обычных катализаторов 10 —10 см, пористость 20—60%. Движение компонентов в катализаториых порах (подвод реагентов и отвод продуктов реакции) осуществляется в основном в результате молекулярной диффузии, нормальной или кнудсеновской. [c.39]

    На механизм диффузии газов в пористых средах особенно существенное влияние оказывает размер пор. В единичном объеме пористой среды число взаимных столкновений между молекулами газа в свободном объеме пористой структуры Л 1 = егес/Я, где п — число молекул газа в единице объема, с — средняя скорость теплового движения молекул, К — длина свободного пробега молекул. Число столкновений молекул газа с внутренней поверхностью пористой среды равно = ЗпсЦ. Отношение этих двух чисел, называемое числом Кнудсена, определяет влияние внутренней поверхности пористой среды на диффузию газа Кп = Х/2г г = 2е/8 — гидравлический радиус пор. В зависимости от соотношения размера пор и средней длины свободного пробега молекул газа возможны различные режимы диффузии. Если длина свободного пробега значительно меньше размера пор (Кп 0), то число взаимных столкновений между молекулами газа будет значительно больше числа столкновений молекул с поверхностью пор. Поэтому влияние внутренней поверхности катализатора на движение молекул газа будет незначительным, и в свободном пространстве пористой структуры перенос веществ будет определяться молекулярной диффузией. В случае бинарной диффузии 12- Величина коэффициента молекулярной диффузии />12 определяется свойствами диффундирующего вещества и составом среды, в которой оно диффундирует. [c.162]


Смотреть страницы где упоминается термин Диффузия молекулярная в пористых катализаторах: [c.567]    [c.142]    [c.324]    [c.675]    [c.182]    [c.35]    [c.206]    [c.324]    [c.160]    [c.308]    [c.139]   
Массопередача в гетерогенном катализе (1976) -- [ c.42 , c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузия молекулярная

Катализаторы как пористые

Катализаторы пористость



© 2025 chem21.info Реклама на сайте