Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение ковалентной цепи

    СТРОЕНИЕ КОВАЛЕНТНОЙ ЦЕПИ [c.156]

    Основные понятия органической химии. Химическое строение, углеродная цепь, функциональные группы, типы химических связей (ковалентная, семиполярная, ионная), изомерия углеродного скелета и изомерия положения. Валентные состояния углерода (5р 5р2, 5р), их электронная и геометрическая характеристика. Ароматическая связь. Основные типы взаимного влияния атомов и групп в органических соединениях (индукционный эффект, эффект сопряжения).  [c.218]


    Химическую связь в молекуле метана, СН4, удается хорошо объяснить, исходя из представлений о тетраэдрических хр -гибридных орбиталях атома углерода. Эти представления позволяют также объяснить строение этана, СзН , и многих других органических соединений, в которых атомы углерода соединены друг с другом в цепи простыми связями. В этане к каждому из двух атомов углерода присоединено по три атома водорода с образованием ковалентных связей, в которых участвуют три из четырех гибридных хр -орбиталей. Четвертая хр -орбиталь каждого атома углерода используется для образования ковалентной связи с другим таким же атомом. Перекрывание р -гибридных орбиталей двух атомов углерода приводит к возникновению устойчивой связывающей молекулярной орбитали и неустойчивой разрыхляющей орбитали. Связывающая орбиталь, симметричная относительно оси С—С, является а-орбиталью и заполнена двумя электронами со спаренными спинами. [c.565]

    Полимерными соединениями, или полимерами, называют вещества, молекулы которых состоят из многочисленных элементарных звеньев одинаковой структуры. Элементарные структурные звенья соединены между собой ковалентными связями в длинные цепи линейного или разветвленного строения или же образуют эластичные или жесткие пространственные решетки. Своеобразно построенные, гигантские по размерам молекулы полимерных соединений обычно называют макромолекулами. Основная цепь макромолекул органических полимеров состоит из атомов углерода, иногда с чередованием атомов кислорода, серы, азота, фосфора. В макромолекуляр-ную цепь могут быть введены атомы кремния, титана, алюминия и других элементов, не содержащихся в природных органических соединениях. [c.9]

    При исследовании диэлектрических свойств полимеров особый интерес представляет оценка полярности кинетических единиц — элементарных диполей мономерных звеньев, так как такая информация помогает изучению строения соответствующих макромолекул [39, с. 339]. Обычно диполи в полимерах связаны ковалентно с основной цепью макромолекулы или с ее боковыми группами. Дипольный момент макромолекулы, позволяющий судить о ее гибкости, можно определить как векторную сумму составляющих векторов — дипольных моментов звеньев цепных молекул Wo  [c.242]

    К высокомолекулярным соединениям относятся вещества, молекулы которых состоят из больщого количества элементарных (звеньев одинакового состава и структуры. Такие элементарные звенья образуются простыми органическими веществами (мономерами), способными соединяться между собой ковалентными связями в длинные цепи линейного или разветвленного строения (стр. 73, 442) [c.437]


    Здесь термин строение , как и по отношению к другим высокомолекулярным соединениям, следует понимать в том смысле, который ему придают в химии высокомолекулярных веществ. Поскольку любое высокомолекулярное вещество представляет собой смесь полимергомологов, то под строением в данном случае понимают не структуру какой-то определенной молекулы, а строение усредненной молекулы полимера и, в первую очередь, если известно строение мономера, основной тип связи мономерных единиц между собой. Структура возникающих в результате ассоциации полимерных цепей агрегатов представляет собою следующую ступень понятия и строение высокополимера . В этом случае рассматривается уже не расположение ковалентных связей и атомов, а взаимное расположение полимерных цепей в пространстве, их конформация и возникающие между ними межмолекулярные силы. [c.246]

    Результаты изучения строения в газовой фазе H N и ряда ковалентных цианидов и изоцианидов, содержащих линейные фрагменты R(M)—С—N и R(M)—N—С соответственно, суммированы в табл. 21.8. Существуют две кристаллические формы H N низкотемпературная ромбическая форма при —102,8 °С обратимо переходит в тетрагональную полиморфную модификацию. В структурах обеих модификаций молекулы образуют бесконечные цепи [1]  [c.27]

    Расположение дисульфидных мостиков выявляет эволюционные связи. Многие белки, в частности внеклеточные, содержат дисульфидные мостики, ковалентно связывающие удаленные части полипептидной цепи. Способы изображения таких связей показаны на рнс. 7.2. Мостики S—S обнаруживают тенденцию сохраняться в процессе эволюции, поэтому они характерны для данного семейства гомологичных последовательностей. Более того, по дисульфид-ным мостикам можно выделить структурные повторения в одной цепи, как в случае агглютинина пшеничного зерна (рис. 7.2, а), строение которого было выяснено по карте электронной плотности, так и сывороточного альбумина человека (рнс. 7.2, б), строение которого установлено химическими методами. [c.159]

    У ряда белковых соединений несколько сложных полипептидных цепей белка могут агрегироваться вместе, создавая более сложный комплекс определённого строения, называемый четвертичной структурой белка. Каждая полипептидная цепь, образующая четвертичную структуру, называется субъединицей и сохраняет свойственные ей первичную, вторичную и третичную структуры, однако биологическая роль комплекса в целом отличается от биологической роли субъединиц вне комплекса. Фиксация четвертичной структуры обеспечивается водородными связями и гидрофобными взаимодействиями между субъединицами. Например, молекула гемоглобина - белка с четвертичной структурой - состоит из четырёх субъединиц, окружающих гем (простетическую железосодержащую группу - железопорфирин) между субъединицами нет ковалентной СВЯЗИ, однако тетрамер представляет собой единое целое, в котором субъединицы тесно связаны и ведут себя в растворе как одна молекула. Наличие четвертичной структуры характерно также для других металлопротеинов и для иммуноглобулинов. При формировании четвертичной структуры белка образующийся комплекс может содержать, помимо субъединиц полипептидной структуры, и субъединицы иной полимерной природы, а также соединения других классов. [c.71]

    Анализ известных белковых структур дает ценные сведения для понимания.механизма свертывания и стабильности белков. В структурах этих белков обнаруживаются шесть уровеней организации. На первом уровне находится аминокислотная последовательность, которая целиком определяет окончательную структуру белка. В структурах белков можно выделить несколько типов упорядоченности формы основной цепи. Это так называемые вторичные структуры, которые составляют второй уровень. Две из таких регулярных структур (а-спираль и 3-складчатый лист) были предсказаны на основе ковалентного строения основной цепи как наиболее простые. Следующие два уровня, сверхвторичные структуры и структурные домены, гораздо более сложны и пока не предсказуемы. На этих уровнях также проявляются вполне определенные закономерности, например такие, как корреляция между близкими по цепи остатками. Эти закономерности не выражаются в каких-либо определенных структурах, а носят весьма общий характер. На двух самых высоких уровнях организации, занимаемых глобулярными белками и агрегатами, сейчас уже делаются попытки некоторых структурных предсказаний. Возможность таких предсказаний основана на том, что нижние структуры, домены для глобулярных белков и глобулярные белки для агрегатов предполагаются внутренне стабильными (в некоторых случаях это подтверждено экспериментом). Характер агрегатов можно предсказать с помощью анализа контактной поверхности глобулярных белков. Это же относится и к предсказаниям строения глобулярных белков по их доменам. Кроме того, свойства поверхности, как это следует из изучения поверхностей раздела белок — белок, имеют важное значение для белкового узнавания. В главе обсуждены некоторые законо- [c.127]


    При недостатке в среде О2 в ЦПМ галобактерий индуцируется синтез хромопротеина — бактериородопсина, белка, соединенного ковалентной связью с Сзо-каротиноидом ретиналем (рис. 104, А). Свое название хромопротеин получил из-за сходства с родопсином — зрительным пигментом сетчатки позвоночных. Оба белка содержат в качестве хромофорной группы ретиналь, различаясь строением полипептидной цепи. Бактериородопсин откладывается в виде отдельных пурпурных областей (блящек) на ЦПМ красного цвета, обусловленного высоким содержанием каротиноидов. При выращивании клеток на свету в условиях недостатка О2 пурпурные участки могут составлять до 50 % поверхности мембраны. В них содержится от 20 до 25 % липидов и только один белок — бактериородопсин. При удалении из среды солей клеточная стенка растворяется, а ЦПМ распадается на мелкие фрагменты, при этом участки мембраны красного цвета диссоциируют, а пурпурные бляшки сохраняются и могут быть получены в виде отдельной фракции. [c.419]

    Ключом к разгадке строения полипептидной цепи в целом являются, в первую очередь, конфигурация и размеры амидной группы в ней, т. е. длины ковалентных и водородных связей, а также значение углов между валентностями. Л. Полингу и Кори (1957 г.) на основе общих молекулярно-физических представлений удалось весьма точно предсказать структуру спирали. Основной вопрос о строении пептидной группы, определяющей строение цепи в целом, был решен ими следующим образом длина [c.40]

Рис. 9-83. Строение разветвленной цепи РНК. образующейся при сплайсинге РНК. А-нуклеотгш. выделенный цветом. - это тот же самый нуклеотид, который фигурировал на рис. 9-82 здесь показано ответвление, образующееся на первой стадии реакции сплайсирова-ния. На этой стадии 5 -конец последовательности интрона разрезается и его фосфатная группа ковалентно связывается с 2 -ОН-рибозной группой А-нуклеотида, расположенного на расстоянии 30 нуклеотидов от З -конца последовательности интрона. Разветвленная цепь остается в вырезаемой Рис. 9-83. Строение <a href="/info/117813">разветвленной цепи</a> РНК. образующейся при сплайсинге РНК. А-нуклеотгш. выделенный цветом. - это тот же самый нуклеотид, который фигурировал на рис. 9-82 здесь показано ответвление, образующееся на <a href="/info/1485656">первой стадии реакции</a> сплайсирова-ния. На этой стадии 5 -конец <a href="/info/1434507">последовательности интрона</a> разрезается и его <a href="/info/105049">фосфатная группа</a> ковалентно связывается с 2 -ОН-рибозной группой А-нуклеотида, расположенного на расстоянии 30 нуклеотидов от З -<a href="/info/1404452">конца последовательности</a> интрона. <a href="/info/117813">Разветвленная цепь</a> остается в вырезаемой
    Ковалентная вулканизация карбоксилсодержащих каучуков придает резинам свойства, аналогичные эластомерам без карбоксильных групп. Поэтому для карбоксилсодержащих каучуков важное значение приобретает вулканизация с помощью окисей, гидроокисей и других соединений металлов за счет реакции соле-образования. Получаемые при этом резины уже при относительно низком содержании звеньев метакриловой кислоты в сополимере (1—3%) характеризуются высокими механическими и эластическими свойствами. Рентгенографически в солевых резинах при растяжении обнаружен сильный ориентационный эффект. Тем самым установлено, что дефекты в структуре полимерной цепи, обусловленные неоднородностью ее строения, и отсутствие вследствие этого склонности к ориентации и кристаллизации, могут быть компенсированы за счет изменения природы вулканизационной сетки [1]. [c.400]

    В силу способности атомов углерода к образованию ковалентно связанных цепей и циклов, в том числе и с включением гетероатомов (т. е. атомов иных, нежели углерод), строение органических соединений существенно отличается от строения большинства неорганических соединений. Поэтому в основе органической и неорганической номенклатур лежат совершенна различные принципы. Номенклатура органических соединений развивалась медленно и постепенно в результате в настоящее время в ней можно различить не менее девяти принципов и несколько специальных положений. Последние будут рассмотрены в дальнейшем в соответствующих местах. Основные же принципы характеризуются тем, что в большинстве случаев они в равной степени применимы как к тривиальным, полутривиальным, так и к систематическим названиям. [c.75]

    По поведению при нагреве и охлаждении полимерные связующие принято разде.оять на термопластичные и термореактивные. Свойства термопластичных полимерных связуюпщх позволяют получать изделия из них литьем под давлением, экструзией, напылением и широко использовать при их изготовлении автоматизированное оборудование. Макромолекулы термопластичных полимеров имеют линейное строение и получаются из мономеров, имеющих по две функциональные группы, которые присоединяются друг к другу прочными ковалентными связями. Между собой макромолеку-лярные цепи связаны слабыми ван-дер-ваальсовскими силами. [c.74]

    Макромолекулы полимерных соединений представляют собой совокупность элементарных звеньев одинакового химического состава и строения, соединенных между собой ковалентными связями. В большинстве случаев для соединения друг с другом атомов, составляющих макромолекулярную цепь, затрачиваются две валентности. Если атомы, входящие в состав цепи,, имеют большее число валентных связей, то оставшимися валентными связями они соединены с водородными атомами или с какими-либо замещающими их группами. В некоторых случаях оставтииеся валентности могут быть затрачены на соединение отдельных макромолекулярных цепей друг с другом. [c.21]

    Интересно, что структура силикат-ионов оказывает определяющее влияние на такое механическое свойство силикатов, как сопротивление разрущению. Среди силикатов имеется группа асбестов с характерным волокнистым строением (см. рис. 22.8) эти минералы имеют двухтяжевую цепочечную структуру или структуру, в которой листы свиты в цепи. Волокниста.я текстура минералов группы асбестов обусловлена тем, что электростатические силь[ взаимодействия между цепочками намного слабее, чем ковалентные связи внутри цепочек. Тальк М з8140,о (ОН)2 имеет структуру, образованную плоскими листами. Относительно слабые силы взаимодействия между листами позволяют им скользить друг по другу подобно тому, как скользят друг по дру- [c.344]

    Электронная структура полимеров определяется характером существующей химической связи между атомами элементарного звена и между отдельными участками макромолекулы. Например, в молекуле белка кератине, являющегося основой строения натурального волокна — шерсти, существуют ковалентные полярные связи с высокой долей делокализации электронной плотности между атомами пептидной группировки -НЯС-СО-КН-, составляющей скелет макромолекулы. Кроме этого, внутри макромолекулы и между макромолекулами существуют другие виды химической связи, также определяющие пространственную конфигурацию (конформацию) макромолекулы водородные связи, вандерваальсовы и другие виды взаимодействий. Но электронн-ная структрура полимеров не всегда может быть представлена как сумма электронных структур отдельных его участков. Вследствие большого числа атомов, участвующих во взаимодействии, для полимеров, так же, как и для твердых тел, но при гораздо большем числе влияющих факторов, могут быть рассчитаны валентная зона и зона проводимости. По величине расщепления — разности энергий между ближайшими границами этих зон, могут быть выделены полимеры — изоляторы, полимеры — полупроводники и полимеры — проводники электрического тока. Для полимеров с бесконечными цепями атомов, обеспечивающих делокализацию электронов по всей макромолекуле, предсказывают и сверхпроводящие свойства. [c.613]

    Хелатные полимеры, содержащие в основной цепи наряду с ковалентными координационные связи, могут быть получены взаимодействием мономеров, содержащих комплексообразующие группы, с солями металлов. Так, при взаимодействии тетракетонов с ацетилацетонатами металлов образуются полимеры следующего строения  [c.430]

    При обычных условиях молекула твepдo 1 серы состоит из 8 атомов, замыкающихся в кольцо. Химическая связь — ковалентная. При нагревании кольцо За разрывается. При высоких температурах существуют обрывки цепей (>900° С), 8а2 25 (свыше 1500° С). В парах серы существует равновесие между молекулами 89, За, 84 и За. Строением молекулы серы объясняется многообразие ее физических состояний. Так, образование пластической серы объясняется тем, что часть колец-молекул разрывается и возникшие цепочки соединяются друг с другом в длинные цепи. В результате получается высокомолекулярное соединение — полимер с каучукоподобной эластичностью (сравнить с полимеризацией каучука, 86). [c.224]

    Сильноосновные белки связываются с сильнокислыми нуклеиновыми кислотами (молекула нуклеиновой кислоты по сложности строения аналогична белку и является чем-то вроде апопротеина). Неизвестно, связаны ли эти два типа веществ в основном солевой связью или также и ковалентной. Белковая часть может быть отделена от нуклеиновой действием трипсина или в ряде случаев обработкой раствором хлористого натрия соответствующей концентрации. Остающаяся нуклеиновая кислота представляет собой цепь из повторяющихся единиц, каждая яз которых состоит из остатков углевода, фосфорной кислоты и пуринового или пиримидинового основания. Углевод представлен D-рибозой или 2-дезокси- )-рибозой. Известные в настоящее время нуклеиновые кислоты содержат каждая только один вид сахара, но не оба вместе. Из дрожжей была впервые выделена нукле1Шовая кислота, содержа- [c.733]

    МАКРОМОЛЕКУЛА (от греч. makros-большой и молекула), молекула полимера. М. имеют цепное строение состоят из одинаковых или разл. структурных единиц-с о ставных звеньев, представляющих собой атомы или групцы атомов, соединенные друг с другом ковалентными связями в линейные последовательности. Последовательность соединенных друг с другом атомов, образующих собственно цепь, наз. хребтом цепи, или цепью главных валентностей, а заместители у этих атомов - боковыми группами. М. могут иметь линейное или разветвленное строение, в разветвленных М. различают основную и боковые цепи. См. также Высокомолекулярные соединения. [c.636]

    Между атомами в молекулах низкомоле1сулярных органических соединений, в звеньях полимеров и между звеньями в цепях существуют химические (ковалентные) связи, относимые к сильному взаимодействию. Между молекулами низкомолекулярных соединений, между макромолекулами полимеров и между участками одной и той же цепи существует нехимическое взаимодействие (соответственно межмолекулярное и внутримолекулярное), не приводящее к образованию новых химических связей, - слабое взаимодействие. Это взаимодействие зависит от химического строения молекул, расстояния между молекулами и от их взаимного расположения. Нехимическое взаимодействие подразделяют на межмоле-кулярные силы и водородные связи. Оно определяет агрегатное и фазовое состояния и физические свойства вещества. [c.126]

    Хитин В природных источниках редко находится в индивидуальном состоянии обычно в панцирях крабов и омаров он связан с белком, в виде комплекса или ковалентными связями [165]. Это свойство может быть объяснено недавно открытым фактом, что в большинстве хитинов не все аминогруппы /V-ацетилированы, поэтому они могут выступать в качестве основных групп и образовывать комплексные соединения с другими молекулами, имеюшиып соответствующим образом расположенные ионные группы. Хитин не растворяется в воде и многих органических растворителях. Это затрудняет установление его строения и проявляется, например, в виде низкой реакционной способности при метилировании. Большинство образцов хитина в результате обработки минеральной кислотой при выделении частично Л/-дезацетилированы и имеют более низкую молекулярную массу, чем нативный хитин. Рентгеноструктурный анализ кристаллического хитина показал, что элементарное звено его макромолекулы состоит из двух цепей в изогнутой конформации с меж- и внутримолекулярными водородными связями, подобно целлюлозе (см. разд. 26.3.3,2). [c.258]

    Фикобилипротеины — красные и синие пигменты, содержащиеся только у одной фуппы эубактерий — цианобактерий. Хромофорная фуппа пигмента, называемая фикобилином, ковалентно связана с водорастворимым белком типа глобулина и представляет собой структуру, состоящую из четырех пиррольных колец, но не замкнутых, как в молекуле хлорофилла, а имеющих вид развернутой цепи, не содержащей металла (рис. 69). Молекулы фикобилипротеинов состоят из двух нековалентно связанных неидентичных субъединиц — а и 3, к каждой из которых ковалентно присоединены хромофорные группы фикоэритробилин или фи-коцианобилин. Некоторые данные относительно строения и спектральных свойств фикобилипротеинов цианобактерий приведены в табл. 20. [c.266]


Смотреть страницы где упоминается термин Строение ковалентной цепи: [c.275]    [c.178]    [c.28]    [c.72]    [c.350]    [c.96]    [c.350]    [c.119]    [c.14]    [c.356]    [c.287]    [c.532]    [c.390]    [c.531]    [c.10]    [c.310]    [c.10]    [c.21]   
Смотреть главы в:

Биофизическая химия Т.1 -> Строение ковалентной цепи




ПОИСК





Смотрите так же термины и статьи:

Ковалентность



© 2024 chem21.info Реклама на сайте