Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура и свойства актина

    СТРУКТУРА И СВОЙСТВА АКТИНА [c.190]

    У цезия начинается постройка шестой оболочки, хотя не только не образовался еще 5 -подуровень на пятой оболочке, но и на четвертой еще не начиналась постройка 4/-подуровня. Заполнение этого подуровня, находящегося уже глубоко внутри атома, происходит только у элементов от Се (2 = 58) до Ьи (2 = 71), составляющих группу редкоземельных элементов, или лантаноидов. Атомы этих элементов обладают аналогичной структурой двух наружных оболочек, но различаются по степени достройки внутренней (четвертой) оболочки. Эти элементы весьма мало различаются между собой по химическим свойствам, так как химические свойства определяются главным образом структурой наружных электронных оболочек. Подобный же случай встречается еще раз в седьмом периоде периодической системы. У элементов, следующих за актинием и называемых актиноидами, происходит достройка f подуровня пятой оболочки. [c.41]


    В восьмом ряду дополнительное осложнение связано с тем, что после лантана La идут 14 элементов, чрезвычайно сходные с ним по свойствам, названные лантаноидами. В приведенной таблице они размещены в виде отдельного ряда. Таким образом, восьмой и девятый ряды образуют большой период, содержаш,ий 32 элемента (от цезия s до радона Rn). Наконец, десятый ряд элементов составляет незавершенный 7-й период. Он содержит лишь 21 элемент, из которых 14, очень сходные по свойствам с актинием Ас, выделены в самостоятельный ряд актиноидов. Как мы теперь знаем, такая структура таблицы является отражением фундаментальных свойств химических элементов, связанных с особенностями строения их атомов. [c.22]

    Название лантаноид (или актиноид ) означает подобный лантану (или актинию) и подчеркивает сходства этих элементов с лантанам (или актинием). Действительно, различия в структуре электронных оболочек их атомов существуют лишь в третьем снаружи уровне, в то время как химические свойства элемента обус- [c.44]

    В подгруппу входят шесть элементов 1Л, Na, К, КЬ, Се и Рг. Франций в природе практически отсутствует, а один из его изотопов является продуктом а-распада актиния. Иногда в эту подгруппу включают и водород, который так же, как и остальные элементы группы, содержит один валентный электрон 1з. Однако специфика водорода заключается в том, что он с одинаковой легкостью может и отдавать электрон, превращаясь в катион Н , и принимать его от менее электроотрицательных элементов до гелиевой структуры 1з . В шкале электроотрицательностей Л. Полинга он занимает среднее положение с ЭО = 2,1. По некоторым свойствам (сходный характер спектра, образование иона Н , восстановительная способность в молекулярной и особенно [c.127]

    Актиний —элемент III группы периодической системы, гомолог лантана, он имеет более основные свойства, чем лантан. Актинием в 7 периоде начинается ряд актиноидов, подобный ряду лантаноидов в б периоде. Электронная структура атома отвечает схеме В соответствии с этой схемой актиний имеет только одну степень окисления — три. [c.343]

    Превращение золя в гель связано с возникновением особой внутренней структуры в этой системе. Частицы коллоидных веществ, соприкасаясь друг с другом, как бы склеиваются и образуют своеобразный каркас, в ячейках которого оказывается включенным значительное количество воды. Наличие этой структуры придает гелю характерные механические (вязкоэластические) свойства. Образование тончайшей сети переплетающихся нитей во многих гелях можно наблюдать при помощи электронного микроскопа, дающего увеличение в 30 000—40 ООО раз. Такую сеть, состоящую из переплетающихся нитей гидрофильного коллоида, можно, в частности, видеть на электронных микрофотографиях мышечных белков. Интересную электронную микрофотографию (рис. 4) дает мышечный белок — актин, биологическое значение и биохимические функции которого рассматриваются в главе Мышечная ткань . [c.16]


    Однако изучение свойств элементов № 93—100 показало, что такой вывод был бы неправилен. По мере перехода от урана к заурановым элементам устойчивость высших валентностей не возрастает, а падает наиболее устойчивым становится трехвалентное состояние. Кюрий, берклий, калифорний, эйнштейний и фермий оказываются полными аналогами соответствующих элементов — гадолиния, тербия, диспрозия, гольмия, эрбия. Кристаллографические исследования показали тесную близость кристаллических структур окислов и многих солей элементов от тория до америция. Весьма схожими оказались спектры поглощения водных растворов соединений элементов, следующих за лантаном и за актинием, а также магнитные свойства ионов этих элементов (рис. 15, 16). Тесное родство лантанидов и актинидов явствует и из приводившихся выше данных об их ионообменном разде- [c.300]

    Все актиниды, за исключением актиния, характеризуются заполнением уровня 5/ в электронной оболочке, что определяет подобие их физико-химических свойств. Кроме системы и—51 и отдельных сведений о силицидах тория, нептуния и плутония, никаких данных о системах, образованных элементами 5/ с кремнием, не имеется. Это лишает возможности указать общие закономерности, имеющие здесь место. Большие и сравнительно близкие по величине радиусы атомов таких элементов при металлической и ковалентной связи [620] должны определять сложность строения диаграмм состояния силицидных систем, особенно в областях, бедных кремнием. Диаграмма состояния системы и— 51 является примером. В то же время области, богатые кремнием, должны иметь простое строение, так как структура силицидов в указанных системах определяется прежде всего типом укладки металлических атомов. Это положение также подтверждается имеющимися экспериментальными данными. [c.214]

    Седьмой период незакончен, он включает пока 15 элементов. По своей структуре он должен быть подобным VI периоду. Начинается он с самого типичного щелочного металла франция (А Ь 87, Рг). При перемещении по периоду вправо металлические свойства постепенно падают. Как и в VI периоде, здесь также имеется серия элементов с замедленным падением металличности они идут за актинием (Л ь 89, Ас) и называются актинидами. Серия эта состоит пока из 12 элементов ( 2 90, торий ТЬ — № 101), теоретически же должна состоять из 14. Актиниды не столь сходны между собой и с актинием, как лантаниды между собой и с лантаном их уже не помещают в одну клетку с актинием. Многие из них, наряду с валентностью 3, проявляют и валентности 4—5—6. Например, высший окисел урана (№ 92, П) — иОд. Их также выносят в нижнюю табличку, располагая вместе с родственными им по строению атома лантанидами в виде коротких вертикальных столбиков — подгрупп. [c.59]

    Конфигурации оставшихся элементов пока не могут быть определены с полной достоверностью. Некоторые из этих элементов получены только в микроскопических количествах, и интерпретация их очень сложных спектров далеко не полная. Вероятнее-всего, что, возможно, в тории и почти наверняка в протактинии начинают заселяться 5/-орбитали. Конфигурации отдельных актиноидов приведены в табл. 5.3. Актиний, имеющий конфигурацию 5/°6s 6p 6d 7s , является первым членом ряда актиноидов. По химическим и физическим свойствам он очень напоминает лантан — первый член ряда лантаноидов. Оба элемента образуют нерастворимые фтористые соединения, гидрооксиды, соли щавелевой и фосфорной кислот. Кристаллические структуры соответствующих соединений очень похожи. [c.59]

    Вторая часть (гл. 7—10) содержит более подробные сведения о химических и физических параметрах актинидных элементов (электронная структура, химические, физические и удельные свойства) и источниках этих элементов. Хотя трансурановые элементы начинаются с нептуния, они, включая и лоуренсий, относятся к актинидам (ряд элементов, подобных актинию) их прототипом является элемент под номером 89 — актиний. Эта часть книги призвана послужить справочным материалом для любого студента, но она может быть полезна и для более подготовленных читателей. [c.6]

    В табл. 11.16 приведены экспериментально определенные или наиболее надежно предсказанные конфигурации (кроме структуры радона) для нейтральных атомов от актиния до элемента 103, находящихся в основном состоянии. Для предсказания электронных конфигураций принимались во внимание наблюдаемые закономерности в изменениях спектроскопических, химических и других свойств, причем подразумевалось, что с увеличением порядкового номера энергия уровня 5/ постепенно становится меньше по сравнению с энергией уровня 6й. Для сравнения в таблице приводятся электронные конфигурации (сверх структуры ксенона) лантанидных элементов [134, 146]. [c.512]

    Направление научных исследований ядерная химия и физика свойства франция, актиния и их производных изучение твердых, жидких и газообразных сцинтилляторов, влияния действия излучения на твердые тела химический эффект радиации получение природных и искусственных радиоактивных элементов высокой степени чистоты различными методами, в частности посредством хроматографии на бумаге и смолах действие излучения на структуру различных веществ. [c.336]


    Разное экранирование ядра s-, р-, - и /-оболочками и вызывает немонотонное изменение всех свойств элементов-аналогов (см. главы II, III). Характерные отклонения свойств подтверждаются ломаными линиями изменения первых потенциалов ионизации элементов I группы, первых и вторых потенциалов элементов II группы, включая европий и иттербий (см. рис. 6). При этом лантаноидное сжатие приводит не только к сближению свойств Ы- и 5 - переходных металлов, но и к ослаблению металлических свойств франция, радия, актиния и актиноидов по сравнению с цезием, барием, лантаном и лантаноидами. В частности, это приводит к появлению ковалентно-металлических структур а,- р-урана, а-, Р-нептуния и а-, р-, -плутония, резко отличающихся от нормальных металлических структур неодима—самария. [c.55]

    В эукариотических клетках имеется особый кортикальный слой акт новых филаментов лежащий непосредственно под плазматической мембраной. В целом он представляет собой однородную трехмерную сеть обладающую благодаря поперечным сшивкам, свойствами геля Вместе с тем кортикальные актиновые филаменты образуют и ряд специализированных структур. Например, пучки актиновых филаментов, находящихся в комплексе с миозином, прикрепляются к плазматической мембране и обеспечивают клетку структурами, способными к сокращению. В других участках контролируемая полимеризация актиновых филаментов на их плюс-концах способна выпячивать плазматическую мембрану наружу, создавая подвижные выступы клеточной поверхности. Разнообразие структур кортекса и выполняемых ими функций за-висит от обширного спектра актин-связывающих белков, которые сшивают актиновые филаменты в рыхлый гель, объединяют их в жесткие пучки, движутся по актиновым филаментам, создавая механическое усилие, или прикрепляют их к плазматической мембране. Некоторые из белков, выполняющих эту последнюю функцию, прикрывают плюс-концы актиновых филаментов, контролируя тем самым их полимеризацию и деполимеризацию в клетке. Именно этим белкам, как полагают, принадлежит ключевая роль в сложных движениях клеточной поверхности, например при фагоцитозе или при перемещении клеток по субстрату. [c.292]

    Необычайная эволюционная консервативность актина и тубулина может, но крайней мере отчасти, быть следствием структурных ограничений, которые накладываются связыванием их с многочисленными (и разнообразными) белками. Молекулы тубулина, так же как и актина, взаимодействуют не только между собой, но и со многими вспомогательными белками. Как мы увидим, эти белки модифицируют свойства микротрубочек и соединяют их с другими структурами клетки. По-видимому, большинство случайных мутационных изменений нарушают хотя бы одну из функций микротрубочек или актиновых филаментов и поэтому оказываются вредными для организма. [c.295]

    Некая новая функция также может быть развита на основе предшествующих белков в совершенно новом функциональном направлении [7541. Как видно из табл. 9.4, сериновая протеаза является прототипом функциональной единицы, которая неоднократно использовалась при развитии сложных физиологических систем. Другой распространенный пример —белки актин и миозин, которые широко распространены в подвижных клетках и их содержимом [755, 756]. У более высокоразвитых организмов актин-миозиновыми системами осуществляются такие различные функции, как сокращение мышц, освобождение соединений-переносчиков в нервной системе, амебовидное движение белых кровяных телец и закупорка поврежденных кровяных сосудов путем создания сгустка. Кроме того, в некоторых биологических процессах, когда должна стабилизироваться или изменяться фэрма клеток, используется свойство актина образовывать самые разнообразные структуры за счет обратимой полимеризации [757]. [c.283]

    Поскольку актиний трудно выделить из природных источников, исследователи давно пришли к выводу, что химические свойства актиния очень близки к химическим свойствам лантана и редкоземельных элементов. Актиний, как и редкоземельные элементы, образует не растворимые в воде фторид, гидроокись, оксалат, карбонат и фосфат. Физические свойства галогенидов актиния, насколько они изучены, очень похожи на свойства соответствующих галогенидов редких земель. Все те чистые соединения актиния, которые были приготовлены и охарактеризованы, изострук-турны с соответствующими соединениями лантана. Кристаллохимические исследования показали, что размеры иона Ас наибольшие из всех известных трехзарядных ионов радиус его равен 1,10 А. Ионный радиус лантана равен 1,06 А, небольшое различие ионных радиусов (0,04 А), наряду с тем фактом, что оба иона имеют аналогичную электронную структуру инертного газа, в равной мере обусловливает сходство химических свойств. Заключение о подобии актиния и редких земель подтверждается его поведением при соосаждении с носителями. Из табл. 2.2 очевидно, что химические свойства Ас , о которых можно судить на основании наблюдаемого поведения при соосаждении с носителями, действительно [c.19]

    Взаимосвязь между разными классами актин-связывающих белков становится яснее, если рассматривать ее с точки зрения теории гелей, предложенной Р1огу. Эта теория утверждает, что при достаточно большой вероятности сшивок между полимерами формируется сшитад трехмерная сеть. Тем самым предсказывается существование точки гелеобразования , в которой должен происходить резкий переход от раствора к гелю, отчасти сходный в математическом отношении с такими фазовыми переходами, как плавление и испарение дальнейшее увеличение количества сшивок — за точкой гелеобразования — должно приводить лишь к изменению-жесткости геля. Таким образом, белки, образующие поперечные сшивки, будут переводить вязкий раствор Р-актина в состояние геля, а те белки, которые разрушают филаменты или вызывают увеличение их числа, станут растворять гель путем снижения средней длины полимеров, не сопровождающегося возрастанием количества-сшивок гель растворится, когда плотность распределения сшивок упадет ниже уровня, определяемого точкой гелеобразования. Миозин может взаимодействовать с гелем и вызывать его сокращение. Теория гелей оказывается полезной при сопоставлении свойств актин-связывающих белков разных классов и при разработке методов исследования, их функций. Следует, однако, иметь в виду, что теория гелей рассматривает лишь изотропные структуры и сама по себе не учитывает топологических особенностей конкретных систем. Как станет ясно из. дальнейшего, топология цитоскелета является чрезвычайно важной его характеристикой, которую теория гелей предсказать пока не может. [c.17]

    Название <1 лантаноид (или актиноид ) означает подобный лантану (или актинию) и подчеркивает сходство этих элементов с лантаном (или актинием). Действительно, различия в структуре электронных оболочек их атомов существуют лишь в третьем снаружи уровне, в то время как химические свойства элемента обусловлены электронами, находящимися лишь на внешних и предвнешних уровнях его атомов. Поэтому в короткопериодном варианте системы элементов семейства / элементов располагаются в той же побочной (третьей) подгруппе, что и лантан (или актиний). [c.54]

    Плутоний принадлежит к элементам VH периода таблицы Менделеева и следует в нем за ураном и нептунием. В отношении места этих элементов в периодической системе в настоящее время наиболее распространена теория Сиборга [3, гл. 17 170, 203, гл. 11 646, 648]. По этой теории у элементов, начиная формально с тория и кончая лауренсием, происходит последовательное заполнение четырнадцатью электронами внутреннего энергетического уров1НЯ 5/. Так как количество внешних валентных электронов (один электрон 6d и два —7s) при этом не меняется и остается рав ным количеству валентных электронов актиния, химические и физические свойства членов ряда должны быть сходны, а сам ряд получил название актинидов. Подобная закономерность четко выражена у лантанидов, имеющих электронную структуру сверх структуры ксенона if ndQs и главную валентность 3. [c.13]

    Несмотря на то, что актинидная теория позволила предсказать химические свойства транскюриевых элементов, она совершенно недостаточно объясняет поведение первых, к тому же наиболее изученных элементов ряда. Дело прежде всего заключается в том, что главная валентность первых пяти элементов, следуюш,их за актинием, выше трех. Валентные состояния ТЬ, Ра, и, Np, Ри и Ат уже не являются малыми отклонениями от главной валентности 3, как это имеет место у лантанидов, а образуют самостоятельную закономерную последовательность. Электронные структуры, химия этих элементов, а также требование непрерывности размещения элементов в периодической системе по атомным номерам подсказывают иной подход к определению обсуждаемого ряда. [c.16]

    Как известно, название актиниды патучило сейчас широкое распространение, и в настоящее время бачьшинство ученых считают, что элементы, начиная с актиния, следует располагать в периодической системе Менделеева как семейство, аналогичное семейству лантанидов [2, 7, 50, 51, 148, 170, 221, 294]. Но все-таки электронную структуру и место этих элементов в периодической системе нельзя рассматривать как твердо установленные [227]. Сходство химических свойств актинидов, в частности Ра, Th и U, с лантани-дами, с одной стороны, и элементами переходных подгрупп IVa, Va и Via, с другой стороны, говорит о двойственности химической природы актинидных элементов [147, 148]. Поскольку разность энергетических уровней таких удаленных подгрупп, как 5/ и 6d [c.6]

    Свойства. Приготовленный по способу 2 металлический актиний образуег серебристо-белые (часто с золотистой поверхностью) корольки, которые вслед ствие своей радиоактивности люминесцируют в темноте, давая бледно-голубое-свечение, /пл 1050 50°С. Кристаллическая структура типа А 1 (а=5,311 A)i. Во влажном воздухе быстро корродируют с.образованием белой пленки АсаОзъ [c.1213]

    В подгруппе находятся четыре элемента 8с, У, Ьа и Ас. Все изотопы актиния радиоактивны, поэтому свойства этого элемента рассматривают в радиохимии. Электронная структура элементов (п - 1)сг пз . Основная и единственная степень окисления +3. Ионы жесткие, малополяризуемые, поэтому связь с анионами ионная, соли полностью диссоциируют на ионы, гидроксиды — основные, а Ьа (ОН)з по свойствам напоминает щелочи. [c.179]

    У цезия начинается постройка шестой оболочки не только до образования 5(3-группы, но и на четвертой еще не начиналась постройка 4 -группы. Заполнение этой подгруппы, находящейся глубоко внутри атома, происходит только у элементов от цезия до Кассиопея, составляющих группу редкоземельных элементов, или лантанидов, Атомы этих элементов обладают одинаковой структурой двух наружных оболочек, но различаются по степени достройки внутренней четвертой оболочки. Известно, что эти элементы по своим химическим свойствам мало различаются, так как химические свойства определяются главным образом структурой наружных электронных оболочек. То же самое повторяется в седьмом периоде периодической системы. У элементов, следующих за актинием, — актинидов происходит достройка подгруппы f пятой оболочки. [c.492]

    Наличие в периодах вставных декад приводит к тому, что типичные металлы отделены от типичных неметаллов не 5, а 15 элементами. Вследствие этого соседние элементы в больших периодах (IV и V) отличаются по химическим свойствам гораздо меньше, чем в малых периодах (П и III). В VI периоде вставная декада начинается с лантана. Однако в дальнейшем в атомах четырнадцати элементов от церия по лютеций происходит заполнение 4/ -орбиталей. Только после этого заполняются оставшиеся 5 -орбитали. Таким образом, название декада в этом случае условное, так как от бария до таллия размещается не 10, а 24 элемента. Аналогично построен незавершенный VII период. Для него известны только два элемента вставной декады актиний и курчатовий. Стоящие рядом f-элeмeнты очень мало отличаются друг от друга по химическим свойствам. Это объясняется тем, что различие в электронных структурах [-элементов наблюдается, главным образом, в третьем снаружи электронном слое. [c.36]

    Соединения бора, алюминия, галлия, индия с элементами группы азота имеют структуры типа сфалерита или вюртцита, чем они резко отличаются от карбидов, нитридов, моноокислов переходных металлов, часто обладающих характерной структурой типа N301 с более или менее отчетливо выраженными металлическими свойствами. Структуру такого типа имеют соединения скандия, иттрия, лантана с азотом, фосфором, мышьяком, сурьмой и висмутом, а также соединения GdN, LuN. Последнее указывает на близость ветви гадолиния и лютеция к лантану. Вследствие наличия внешней -конфигурации ионов структуру типа N301 должны иметь все соединения иттрия, актиния, гадолиния, лютеция, кюрия и лоуренсия с азотом и его аналогами. [c.131]

    Несостоятельность этой классификации видна из того, что некоторые белки, например мышечный белок актин, могут находиться и в глобулярной и в фибриллярной форме. Молекулярный вес белков колеблется в широких пределах, от 10 до нескольких миллионов. Однако большинство растворимых белков имеет молекулярный вес порядка 10 они, как правило, имеют форму шара или эллипсоида размером от 15 до 60 А. Белки с молекулярным весом порядка 10 содержат около 800 аминокислотных остатков, причем длина каладого аминокислотного остатка развернутой пептидной цепи составляет примерно 3,6 А. Следовательно, в соответствии с указанными выше размерами пептидная цепь в глобулярных белках должна быть каким-то образом свернута или скручена. В таком виде белки сохраняют какую-то внутреннюю структуру и имеют ярко выраженную видовую, специфичность, которая сохраняется и после их растворения в водно-солевых растворах, а также после высаливания их из растворов сульфатом натрия или сульфатом аммония. Способность белков сохранять пространственную структуру имеет чрезвычайно важное биологическое значение, так как она лежит в основе их ферментных, гормональных и иммунохимических свойств. [c.38]

    Способность к движению — одно из характерных свойств всех живых организмов, начиная от простейших и кончая самыми сложными. Сокраш ение разных мышц и движение листьев растений, биение ресничек и движение жгутиков, деление клеток и движение протоплазмы — все эти разнообразные формы проявления двигательной активности имеют обш ую черту — превраш ение химической энергии, освобо-ждаюш ейся при гидролизе АТФ, в механическую. Белковые структуры, участвую-ш ие в гидролизе АТФ и генерации силы, — это либо миозин и актин, либо кинезин (или динеин) и тубулин. При мышечном сокраш ении механическая работа осуш е-ствляется организованными в надмолекулярные структуры ферментом — АТФазой миозина — и актином. Регулятором двигательной активности в мышцах является кальций. В немышечных клетках, наряду с кальциевой, по-видимому, суш ествуют и другие способы регуляции. Выяснение молекулярных механизмов генерации силы, трансформации химической энергии гидролиза АТФ в механическую работу, а также механизмов регуляции этих процессов является основной задачей биофизики биологической подвижности. Наибольшие успехи в этом направлении достигнуты при исследовании наиболее организованных поперечно-полосатых мышц позвоноч- [c.225]


Смотреть страницы где упоминается термин Структура и свойства актина: [c.121]    [c.434]    [c.174]    [c.532]    [c.577]    [c.201]    [c.35]    [c.192]    [c.46]    [c.291]   
Смотреть главы в:

Мышечные ткани -> Структура и свойства актина




ПОИСК





Смотрите так же термины и статьи:

Актин

Актиний



© 2024 chem21.info Реклама на сайте