Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Системы водяного и воздушного охлаждения

    На существующих нефтеперерабатывающих заводах избыточное тепло нефтепродуктов снимается, как правило, оборотной водой. Система промышленного водоснабжения крупного нефтеперерабатывающего завода очень громоздка и дорога. Кроме того, оборотная вода загрязняет сточные воды заводов и водоемы. В связи с этим большое значение имеет замена водяных конденсаторов-холодильников с вспомогательным оборудованием аппаратами воздушного охлаждения. Капитальные вложения на сооружение аппаратов воздушного охлаждения в 2,7 раза, а годовые эксплуатационные затраты — в 2,5 раза ниже, чем при использовании конденсаторов водяного охлаждения  [c.199]


    По условиям эксплуатации компрессорные установки газонаполнительных станций работают при температурах до —30 °С. Поэтому в ряде случаев целесообразно применение двухконтурных замкнутых систем охлаждения с использованием во вторичном контуре аппаратов воздушного охлаждения, а в первичном жидкостном контуре сорока пяти процентный раствор этиленгликоля в воде или введение антифриза с присадками. Система охлаждения газа — воздушная с использованием аппаратов воздушного охлаждения в стационарных установках допускается водяное охлаждение. В конструкции компрессора должна быть предусмотрена минимальная подача смазки на цилиндры и сальники. [c.330]

    Существенное снижение водопотребления достигается при замене водяного охлаждения воздушным. Действующими в отрасли нормами технологического проектирования водяное охлаждение допускается лишь в тех случаях, когда по каким-либо причинам воздушное охлаждение невозможно. Аппараты воздушного охлаждения могут быть использованы вместо градирен для отвода избыточного тепла воды. Градирни открытого типа сложны в эксплуатации, в обычных условиях унос капельной влаги из градирен достигает 0,3% и более, при этом в районе градирен загрязняются воздушный бассейн и почва. Особенно эффективны закрытые оборотные системы с аппаратами воздушного охлаждения высокозастывающих продуктов. [c.80]

    Неисправность системы водяного (воздушного) охлаждения [c.215]

    При выборе вариантов системы охлаждения с /вых — = ==12—15 С необходимо проводить экономический расчет решающим условием для экономичности системы охлаждения являются минимальные капитальные и эксплуатационные затраты в нормативный срок окупаемости. В табл. 1-1 приведены сравнительные технико-экономические показатели систем водяного и воздушного охлаждения для условий Новомосковского, Днепродзержинского и Северодонецкого производственных объединений Азот . [c.9]

    Рабочий объем двигателя принят за основу в системе классификации масел по API. Двухтактные двигатели, в основном, имеют воздушное охлаждение, хотя для двигателей моторных лодок более эффективно использование водяного охлаждения, благодаря чему возможно достижение более высоких мощностей. [c.115]

    Общий порядок пуска печей следующий 1) включение водяного и воздушного охлаждения элементов печной системы 2) введение 258 [c.258]


    Одним из таких способов является воздушное охлаждение. Несмотря на то, что воздух в сравнении с водой является плохим теплоносителем (при ii = 20° его теплоемкость примерно в 4 раза, а теплопроводность в 2,4 раза ниже воды), конструкции ABO и схемы обвязки в технологических линиях позволяют эффективно применять их вместо теплообменников с водяным охлаждением. Однако системы с ABO будут эффективны только в том случае, если 75—90% общей тепловой нагрузки может [c.8]

    За последние годы резко уменьшился расход воды на производственные нужды, сократились сбросы в водоемы сточных вод. Расход свежей воды на производственные нужды уменьшился в несколько раз,сократился в 2—3 раза сброс стоков. Такого результата удалось добиться благодаря применению воздушного охлаждения, внедрению глубокой очистки стоков первой системы с последующим возвратом их в оборот. Соотношение между воздушным и водяным охлаждением на передовых отечественных заводах достигло 70 30, причем степень оснащенности технологических установок аппаратами воздушного охлаждения постоянно растет. [c.406]

    Аппараты воздушного охлаждения в системе вакуумной конденсации водяного пара полностью определяют параметры пара на выходе из турбины, т. е. непосредственно влияют на эксплуатационные характеристики турбины. ABO рассчитаны на температуру атмосферного воздуха 28 °С и имеют высокие значения плотности теплового потока 900—950 Вт/м (табл. 1-6). [c.16]

    Одним из важнейших мероприятий, позволяющих существенно снизить расход воды, является применение воздуха в качестве охлаждающего агента. В этом случае атмосферный воздух при помощи мощных вентиляторов нагнетается в аппараты воздушного охлаждения. Затраты энергии на привод вентиляторов во многих случаях меньше затрат энергии на водяное охлаждение, в которые входят затраты как на подъем воды из водоемов, так и на перемещение воды при оборотном водоснабжении. Если учесть еще затраты, связанные с созданием и эксплуатацией системы канализации, а также ущерб, нанесенный вследствие зафязнения водоемов, то, как это показано многими технико-экономическими расчетами, применение воздуха в качестве охлаждающего агента является важным мероприятием для развития российской промышленности. [c.597]

    В большинстве случаев на компрессорах большой производительности применяется водяная система охлаждения. Однако в районах с ограниченными запасами воды находят применение двухконтурные системы охлаждения, когда компрессор охлаждается водой (первичный контур), охлаждаемой в свою очередь в аппаратах воздушного охлаждения, расположенных вне помещения машинного зала. [c.335]

    Второй путь - это перевод систем водяного охлаждения и конденсации нефтепродуктов на воздушное, позволяющее исключить использование воды как хладагента. Аппараты воздушного охлаждения к настоящему времени - это основная часть конденсационно-охладительной системы, что почти на [c.119]

    Применяют следующие системы охлаждения водяную, воздушную н испарительную. [c.183]

    Существует область оптимальных температур, где коррозия минимальна. Как видно снижение температуры ниже оптимальной резко увеличивает скорость электрохимической коррозии, тогда как скорость газовой коррозии возрастает с повышением температуры не столь быстро. Таким образом, с точки зрения коррозионного воздействия продуктов сгорания сероорганических соединений высокотемпературные режимы менее опасны, чем низкотемпературные. В практике эксплуатации выявлено, что при прочих равных условиях понижение температуры в системе охлаждения двигателя увеличивает темп его износа, причем в двигателях с воздушным охлаждением коррозия оказывает меньшее влияние на износ цилиндров, чем в двигателях с водяным охлаждением. В карбюраторных двигателях коррозия оказывает более сильное влияние на износ цилиндров, чем в дизелях. Наибольшая роль коррозионных процессов в общем износе двигателя наблюдается при пуске двигателя, особенно [c.72]

    Схема регенератора показана на рис. 30. Регенератор оснащен верхним и нижним выравнивающими устройствами 1 и 10, газосборными и воздушными коллекторами 4 и 6, коробами 7 и системой водяного охлаждения катализатора. Конструктивно эти устройства объединены в зоны регенерации. В состав каждых верхних трех-четырех зон регенерации входят газосборный и воздушный коллекторы с коробами. Между ними расположен слой регенерируемого катализатора. Дополнительный теплоотвод в этих зонах не требуется, так как выделяющееся из них тепло поглощается слоем катализатора и дымовыми газами. В последующих зонах под воздушными коллекторами и коробами монтируют змее- [c.87]

    Колонны для разделения сжиженных газов, а также колонные аппараты большой высоты (40 м и более) должны быть обеспечены стационарными системами водяного или воздушно-пенного охлаждения и тушения, состояние и наличие которых должно систематически проверяться. [c.27]


    К мероприятиям по охране и рациональному использованию водных ресурсов относятся сокращение водопотребления, увеличение использования воды в системах оборотного и повторно-псследовательного использования, сокращение непроизводительных расходов и потерь воды, снижение и прекращение сброса загрязненных сточных вод, очистка сточных вод, извлечение из них ценных веществ и др. Сокращение потребления воды на нефтеперерабатывающих предприятиях обеспечивается совер-щгнствованием технологических процессов, созданием замкнутых технологических систем, переводом оборудования с водяного на воздушное охлаждение. [c.292]

    В системе-водяного охлаждения необходимо предусмотреть вентили регулирования количества подаваемой воды, а в системе воздушного охлаждения — соответствующие регулирующие устройства. [c.356]

    Кондиционеры с системой непосредственного испарения и конденсатором с водяным охлаждением представляют собой моноблок. Они проще по конструкции и дешевле кондиционеров с конденсатором воздушного охлаждения. Температура наружного воздуха не влияет на работу таких кондиционеров, поскольку конденсатор находится внутри помещения, и поэтому они могут работать при любой температуре наружного воздуха. Однако для их применения необходимо использование проточной воды, что сдерживает применение таких кондиционеров. Подача охлажденной воды может осуществляться от градирни (системы оборотного водоснабжения), из артезианской скважины или любого другого источника холодной воды. Для экономии воды, подаваемой на охлаждение конденсатора, могут устанавливаться специальные клапаны, позволяющие регулировать расход воды и соответствующее давление конденсации. [c.756]

    Кондиционеры с системой непосредственного испарения с промежуточным контуром и с конденсатором воздушного охлаждения либо с конденсатором водяного охлаждения используются в тех случаях, когда подача холодной воды от чиллера или системы водоснабжения может производиться с перебоями. Микропроцессор автоматически включает холодильный контур при полном или частичном прекращении подачи воды (в ночное время, в зимний период, в результате аварии и т. д.). Две системы охлаждения различного типа, объединенные в одном кондиционере, дают возможность наиболее эффективно использовать оборудование и гарантируют его высокую надежность. Такие кондиционеры способны поддерживать температуру и влажность в помещении с большой точностью. Они выполняются в моноблочном исполнении с [c.757]

    Более простым является воздушное охлаждение за счет отвода из экстрактора больших количеств газовой фазы, содержащей водяной пар. При этом подача суспензии в вакуум-испарители на высоту 10—12 м с помощью мощных насосов не нужна, но усложняется очистка газов от фтора в системе абсорбции. [c.178]

    Принципиально возможно применение воздушного, водяного и испарительного охлаждения полупроводниковых приборов воздушное охлаждение бывает принудительным и естественным. Водяное охлаждение диодов н тиристоров в противокоррозионных защитных установках применять практически нельзя. Испарительное охлаждение является перспективным в силовой полупроводниковой технике. Особое значение в испарительном охлаждении придается выбору жидкости. Наряду с большой удельной теплотой парообразования она должна иметь оптимальную температуру насыщения. Однако до последнего времени системы испарительного охлаждения еще не получили широкого распространения. [c.49]

    Соотношение масла с топливом. При выборе соотношения масло топливо, следует руководствоваться инструкцией на двигатель или указаниями на этикетке и в описании масла. Обычно для подвесных двигателей с водяным охлаждением рекомендуемое соотношение масла с топливом составляет пропорцию 1 50, для одноциллиндовых двигателей мопедов, мотороллеров и газонокосилок - 1 25. Смазывающие свойства современных синтетических масел значительно лучше, поэтому доля масла может быть уменьшена до 1 100 (1 150). В этом случае эксплуатационные расходы уменьшаются даже при применении более дорогого масла. Для двигателей с воздушным охлаждением иногда рекомендуется соотношение 1 16, особенно при тяжелых режимах работы. Такое соотношение рекомендуется и при обкатке двигателя. Во всех случаях следует руководствоваться инструкциями по эксплуатации двигателя. В системах с впрыском соотношение масло топливо регулируется автоматически, в зависимости от нафузки. [c.116]

    Нагретая до 200—250 С нефть поступает в отбен-зинивающую колонну 19 по двум тангенциальным вводам. Из этой колонны сверху уходят газы, пары воды и легкой бензиновой фракции (с концом кипения 120—160 °С). Для конденсации паров и охлаждения смеси служат аппарат воздушного охлаждения 20 и расположенный за ним водяной холодильник 21. В сепараторе 22 от сконденсированной легкой бензиновой фракции отделяются газ и вода. Газ, пройдя клапан, регулирующий давление в системе колонна 19 — сепаратор 22, направляется в секцию очистки от сероводорода, а вода с низа сепаратора 22, который снабжен регулятором межфазового уровня (вода—бензин), поступает в систему очистки сточных вод. [c.14]

    Вредно влияет на работу двигателя усиленное образование накипи. Ее слой толщиной 1 мм повышает температуру стенок цилиндров на 20—25 С, а это ведет к понижению мощности двигателя на 5—6 % и соответствующему повышению расхода топлива на 4-5 %. Для ограничения образования накипи необходимо в систему охлаждения по возможности заливать "мягкую" воду, например дождевую. Если же накипь уже образовалась, ее необходимо устранить, растворив соответствующим составом и промыв всю систему. В процессе эксплуатации двигателя следует периодически проверять натяжение ремня привода вентилятора и водяного центробежного насоса в жидкостной системе охлаждения или воздухонагревателя воздушного охлаждения Если ремень натянут слабо или загрязнен маслом, то он проскальзы вает. Из-за этого вентилятор и водяной насос или воздухонагреватель вращаются медленно, что приводит к перегреву двигателя. Кроме то го, двигатель с принудительной воздушной системой охлаждения мо жет перегреваться из-за загрязнения охлаждающих ребер цилиндров головок и ухудшения теплоотдачи лучеиспусканием. Другой причи ной перегрева может быть неправильное направление потока воздуха Часто причина нарушения оптимального температурного режима дви гателя — неисправность термостата. Эффективная работа термостата обеспечивает автоматическое регулирование теплового режима двига теля. В качестве термосилового датчика применяют сильфон (гофриро ванный баллон) или твердый наполнитель. [c.164]

    На современных экструдерах применяется независимая система нагрева, охлаждения и регулирования температуры для каждой зоны цилиндра. Количество зон в зависимости от типа машины можеп меняться от 2 до 12. На экструдерах, выпускаемых в США, применяются различные системы нагрева паровая, электрическая, масляная, индукционная. Наиболее перспективным является индукционный нагрев. Применяются системы принудительного воздушного и водяного охлаждения. Интенсивность охлаждения внутренней полости шнека эквивалентна уменьшению глубины его канала, а следовательно, также может использоваться в качестве переменного параметра при переработке различных материалов. Для регулирования температуры-головки и стенки цилиндра применяют термометры безконтактного типа, точность показаний которых может составлять 0,5° С. В современных экструди-онных машинах США применяются три типа приводов, которые по мере возрастания стоимости могут быть перечислены в следующей последовательности  [c.180]

    Системы водоснабжения и канализации. Сокращение выбросов вредных веществ в атмосферу с градирен оборотного водоснабжения достигается путем ликвидации источников поступления этих веществ в оборотную воду. В проектах предусматрива-. ется широкое внедрение воздушного охлаждения, герметизация трубных пучков и крышек водяных холодильников, ликвидация узлов охлаждения продуктов непосредственным смешением. При проектировании вакуумных систем следует избегать применения барометрических конденсаторов смешения, что позволяет отказаться от эксплуатации третьей системы оборотного водоснабжения, которая является крупным источником выделения в атмосферу паров углеводородов и сероводорода. [c.199]

    Огромных расходов воды, загрязнений водоемов, а также больших капитальных и эксплуатационных затрат на очистные сооружения, градирни, насосные и на электроэнергию, расходуемую на перекачку воды, можно избежать при переходе от водяного охлаждения к воздушному, применяя конденсаторы и холодильники воздушного охлаждения, теплообмен в которых осуществляется вследствие обтекания воздухом секций, собранных из сребренных труб. Использование воздушного охлаждения позволяет модернизировать действующие установки, повысить их производительность, не затрагивая системы водоснабл<ения и канализации, не увеличивая потерь продукта и сброса сточных вод. Площадь, занимаемая аппаратами воздушного охлаждения, составляет 1,4—2,45% территории завода, тогда как для сооружения водного хозяйства необходимо 13—15% этой территории. [c.78]

    В схеме на рис. 33, б опасность загрязнения воды устранена. Пары с верха вакуумной колонны поступают в поверхностный конденсатор 7, где конденсируется основная часть водяных паров и унесенных нефтяных фракций. В качестве поверхностного конденсатора применяются кожухотрубчатые теплообменники с плавающей головкой или аппараты воздушного охлаждения. Затем конденсат и пары поступают в газоеепаратор 8, из которого не-сконденсировавшиеся пары отсасываются эжекторами. Конденсат по барометрической трубе поступав в отстойник-сепаратор 9. Сюда также подаются паровые конденсаты из межступенчатых конденсаторов эжектора. Вода из отстойника сбрасывается в канализацию, а нефтепродукт, отделенный от воды, возвращается в линию дизельной фракции. Выхлопные газы из эжектора сжигаются в трубчатой печи. На всех действующих АВТ система с использованием конденсаторов смешения заменяется системой с поверхностными конденсаторами. [c.152]

    Вакуумная перегонка мазута обеспечивает получение фр. 360-540°С с высокой степенью четкости по схеме Грознефтехим за счет использования вакуумной колонны диаметром 9 м с насадкой, разработанной ВНИИнефтемашем, максимального использования аппаратов воздушного охлаждения в вакуумсоздаюшей системе, позволяющего сократить расход воды и стоков. Предусмотрены мероприятия по обеспечению надежной работы оборудования (осушка водяного пара перед подачей в колонну) и улучшению экологической обстановки (удаление сероводорода из конденсата). [c.330]

    Оребренный воздушный охладитель и оборудование комбинированной (воздушно-водяной) системы охлаждения зачастую стоит дороже оборудования водяной системы охлаждения, даже если известно, что срок их окупаемости ороче. Хотя прошло уже свыше 20 лет с тех пор, как оребренные воздушные охладители доказали свою исключительную ценность и безотказность в работе в районах, страдающих от недостатка воды, на химических заводах в Европе и на газопроводах в США, вопрос о применении воздушного охлаждения на многих технологических и нефтеперерабатывающих предприятиях рассматривают только тогда, когда ощущаются затруднения в обеспечении установок охлаждающей водой. Такое положение вещей сохранилось до сих пор потому, что воздушные системы охлаждения были сконструированы гораздо позже водяных и аметоды зкономических расчетов для них еще недостаточно разработаны. Расчетные капитальные затраты для системы воздушного охлаждения обычно завышались по сравнению с затратами на градирни или другие обычные источники охлаждающей воды. Поэтому многочисленнме возможности использования систем воздушного охлаждения в различных технологических процессах остались нереализоваиными. [c.401]

    В работе [7] описано применение в качестве предварительного конденсатора аппаратов воздушного охлаждения. При этом отсос неконденсирующихся газов разложения осуществляется с помощью трех-ступенсатой пароэжекторной установки (нормаль MI804-6I). В межступенчатых конденсаторах стандартных размеров хладагентом является оборотная вода. Такая система создания оправдывает себя при трех жестко закрепленных параметрах температура окружающего воздуха не должна быть выше 25°С летом и не ниже -10°С зимой, т.е. в зонах с умеренным климатом давление в системе оборотного водоснабжения в границах установки должно быть не ниже 0,3 Ша температура - не выше 20°С. При этом остаются стоки, образуемые лишь за счет водяного пара, подаваемого в колонну и в систему эжекторов. [c.13]

    По мере увеличения потребности в углеводородном сырье (этане и сжиженных газах) совершенствовались схемы маслоабсорбционных установок в 50—60-х годах широкое распространение получили схемы низкотемпературной абсорбции (НТА), где для охлаждения технологических потоков наряду с водяными (воздушными) холодильниками стали применять специальные холодильные системы (такие же, как в схемах НТК). Технологическая схема низкотемпературной абсорбции состоит как бы из двух частей блока предварительного отбензннивания исходного газа, представляющего собой узел НТК, и блока низкотемпературной абсорбции,, где происходит доизвлечение углеводородов из газа, прошедшего через блок НТК. Такое комбинирование процессов делает схему низкотемпературной абсорбции (НТА) достаточно гибкой и универсальной — она может быть использована для извлечения этана и более тяжелых углеводородов из газов различного состава. Применение схем НТА позволяет обеспечить высокое извлечение пропана из нефтяных газов при сравнительно умеренном охлаждении технологических потоков на установках НТА для извлечения 90—95% пропана достаточно иметь холодильный цикл с изотермой — 30- —38 °С, на установках НТК для этого требуется изотерма -80- —85 °С. [c.205]

    Эффективность рентгеновской трубки весьма низка только 1% потребляемой мощности превращается в рентгеновское излучение, оставшаяся часть рассеивается в виде тепла. В РФС с волновой дисперсией используют трубки с входной мощностью ЗкВт (например, 100 мА при 30 кВ). Такая высокая мощность требует водяного охлаждения катода, чтобы избежать его плавления. Системы РФС с энергетической дисперсией имеют лучшую геометрическую эффективность и могут работать только при низких скоростях счета, так что часто используют маломощные ( 30 Вт или 1мА при 30 кВ) рентгеновские трубки с воздушным охлаждением. Для количественных измерений источники напряжения нагрева спирали и высокого напряжения должны бьггь очень стабильными, потому что любые изменения напряжения или тока будут менять интенсивность излучения трубки и, тем самым, интенсивность флуоресценции пробы. [c.70]

    Первые две проблемы — контроль температуры и отвод и использование тепла — могли быть решены введением циркуляции через реактор по системе труб какого-либо теплоносителя. Однако применяемые обычно в качестве теплоносителей вода, пар, воздух и др. здесь оказались мало пригодными. Водяное охлаждение могло вызвать местное переохлаждение и затухание горения кокса при воздушном охлаждении требовалась огромная поверхность теплообмена вследствие малых коэфициентов теплопередачи и т. д. Этими недостатками не обладали расплавленные соли состава 40% NaN02t 7% аМОз и 53% КМОз. Эта смесь солей плавится при 142,2° С, плотность ее 1,99 при 149° С и 1,68 при 554° С теплоемкость солей (теплоносителя) в твердом виде 0,32, расплавленных [c.232]

    Для выделения из газа большей части аммиака в системах среднего давления кроме первичной конденсахщи (путем водяного или воздушного охлаждения) применяют также вторичную конденсацию (путем аммиачного охлаждения). В некоторых системах среднего давления ограничиваются только первичной конденсацией, однако это значительно снижает съем аммиака, так как на входе в колонну [c.268]

    Фосфатное сырье, серную и оборотную фосфорную кислоты с помощью дозирующих устройств и насосов подают в первую секцию экстрактора (возможно распределение серной кислоты между секциями или аппаратурное разделение зон разложения фосфата в фосфорной кислоте и кристаллизации сульфата кальция при обработке образовавшихся суспензий монокальцийфосфата серной кислотой). В первую секцию возвращают также значительную часть суспензии из предпоследней или последней секции — это позволяет снизить пересыщение и улучшить условия кристаллизации сульфата кальция. Выделяющиеся при разложении сырья фтористые газы из газового пространства экстракторов отсасываются в систему абсорбции, где улавливаются водными растворами Н231Рв. Теплота идущих в процессе экстракции реакций отводится путем отбора водяных паров в систему абсорбции (воздушное охлаждение) или в системе вакуум-испарения, куда мощными насосами подается циркулиру- [c.163]


Смотреть страницы где упоминается термин Системы водяного и воздушного охлаждения: [c.93]    [c.215]    [c.301]    [c.186]    [c.187]    [c.14]    [c.160]    [c.12]    [c.236]    [c.21]    [c.753]   
Смотреть главы в:

Газоперерабатывающие заводы -> Системы водяного и воздушного охлаждения




ПОИСК





Смотрите так же термины и статьи:

Воздушная система

Охлаждение воздушное

Охлаждение системы



© 2024 chem21.info Реклама на сайте