Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Квантовые числа и термы атомов

    Энергия МО, получаемая в приближении ЛКАО, для разделенных атомов характеризуется квантовыми числами п, I, s ж молекулярным квантовым числом к. Только к сохраняет смысл как проекция орбитального момента электрона на межъядерную ось при всех значениях г. При очень больших или очень малых значениях г числа п и I непосредственно связаны с соответствующими атомными квантовыми числами. В реальных молекулах имеются промежуточные значения г, и Малликен [11] заменил для них п и I произвольными символами za, уа, ха, wa и т. д., причем МО z r соответствует наименьшая энергия. Однако по педагогическим соображениям для описания состояний Hj, Нг и возбужденных состояний Нег мы обычно используем более наглядные обозначения составного атома (у этих состояний сравнительно малое равновесное расстояние г), а также терминологию разделенных атомов для двухатомных молекул элементов второго ряда периодической таблицы. Связь между двумя системами обозначений показана на корреляционной диаграмме (рис. 3-22), на которой линиями соединены термы при г = О (составной атом) с эквивалентными термами для г = оа. [c.122]


    Состояния атомов, символы термов и правило Хунда. Энергию, угловой момент и спиновую мультиплетность атома удобно представить символически. Например, для аюма водорода можно определить 5-, Р-, О- и -состояния в зависимости от того, находится ли его единственный электрон на р-, й- или /-орбитали. Основное состояние атома водорода с электронной формулой 15 — это 15-состояние одно из возбужденных состояний атома водорода с электронной формулой 2р — это Р-состояние и т. д. Для многоэлектронных атомов атом в Р-состоянии имеет тот же общий угловой момент (для всех электронов), что я атом водорода в / -состоянии. Соответственно для 5-, Р-, >-, Р-,. .. -состояний общий угловой момент имеет квантовые числа /. = О, 1, 2, 3.....которые аналогичны значениям / для р-, /-,. .. -орбиталей . Подобно этому, квантовое число 5 (не следует путать с -состоянием, упомянутым выше) —это сумма всех электронных спинов. Очевидно, что для завершенного уровня или подуровня 5 = 0 и = О, так как все электроны спарены и все орбитальные моменты погашены. Это очень упрощает обозначение состояний и символику термов. [c.38]

    Нейтральный атом гелия. Искровой спектр гелия показывает, что в полном соответствии со сказанным ранее заряд ядра атома гелия равен 2-1-. Поэтому нейтральный атом гелия имеет два электрона. В нормальном, т. е. наименее богатом энергией, состоянии оба эти электрона связаны одинаково (не считая антипараллельного направления их спинов, ср. стр. 145). Основной терм наиболее коротковолновой.серии парагелия показывает, ч то второму электрону на основном уровне следует приписать главное квантовое число и=1, т. е. наименьшее возможное квантовое число. А в соответствии со сказанным выше это должно быть справедливо [c.142]

    Нейтральный атом гелия. Искровой спектр гелия показывает, что в полном соответствии со сказанным ранее заряд ядра атома гелия равен 2 Поэтому нейтральный атом гелия имеет два электрона. В нормальном, т. е. наименее богатом энергией, состоянии оба эти электрона связаны одинаково (не считая антипараллельного направления их спинов, ср. стр. 129). Основной терм наиболее коротковолновой серии парагелия показывает, что второму электрону на основном уровне следует приписать главное квантовое число и = 1, т. е. наименьшее возможное квантовое число. А в соответствии со сказанным выше это должно быть справедливо и для первого электрона, который, конечно, не должен быть связан слабее, чем второй. Система, образуемая этими двумя электронами, отличается особой устойчивостью. Это следует прежде всего из чрезвычайно высокого значения потенциала ионизации гелия. Но еш,е отчетливее эта особая устойчивость системы электронов в нормальном атоме гелия проявляется при сравнении энергий, требующихся, с одной стороны, для перевода электрона с уровня 1я на ближайший более высокий уровень 2я и, с другой стороны, для перехода электрона с уровня, например, 2в на уровень 2>р (ср. рис. 26). Первая равна 20,55 эв, а вторая — только 2,42 эв. [c.127]


    Из того факта, что (ср. стр. 175 и сл.) основными термами спектров поглощения атомов щелочных металлов являются s-термы, следует заключить, что каждый атом обладает одним электроном, который в нормальном состоянии атома находится на энергетическом уровне с побочным квантовым числом I = 0. Этот электрон лежит каждый раз вне электронной оболочки предшествующего инертного газа, т. е. главные квантовые числа соответствующих основных орбит каждый раз на единицу больше, чем у предшествующих инертных газов. Таким образом, основные орбиты у внешних электронов щелочных металлов обозначаются следующими квантовыми числами  [c.164]

    Атом галогена обладает одним неспаренным электроном, его суммарный спин 5 — Д и мультиплетность М — 25 I = 2. По Р.— С. внутреннее квантовое число / принимает значения /г и 72, что дает термы Р>/, и Первый принадлежит более устойчивому состоянию с меньшейэнергией, второй—менее устойчивому [c.349]

    Так, для главного квантового числа 1 и 1 = 0 имеем терм 5о- Для п = 2 атом может находиться в состоянии 5 или Р (/- = = 0 или 1). Получаем два терма 2 5о и 2 Р[ и т. д. [c.190]

    С другой стороны, резонансные линии обладают некоторыми недостатками. Известно, что нагревание переводит атом в возбужденное состояние, т. е. переводит электроны на уровни с более высоким квантовым числом. В более холодных частях пламени возбужденный атом переходит в состояние с низшим уровнем энергии (к терму с меньшим квантовым числом). Однако невозбужденные атомы в холодных частях пламени могут непосредственно поглощать излучение, если оно соответствует энергетическим характеристикам этих атомов. Холодный атом будет особенно легко поглощать именно резонансные линии, возбужденные другими атомами данного элемента в зонах с более высокой температурой. Действительно, у холодных атомов их электроны находятся на нижнем уровне п = 1) и, поглощая соответствующий квант энергии, электрон может перейти на ближайший уровень (п = 2). [c.176]

    К практическим применениям указанного общего подхода принадлежит один из квантовохимических методов расчета свойств неорганических комплексных соединений — так называемая теория кристаллического поля, которая основана на следующей модели. Гамильтониан свободного атома, в котором учитываются только электростатические взаимодействия, инвариантен относительно одновременного вращения координат всех электронов. Наличие у гамильтониана симметрии такого типа ведет к вырождению уровней в рамках термов -например, для одного электрона, находящегося в -состоянии, это означает, что его энергетический уровень пятикратно вырожден, т. е. ему соответствуют пять различных -функций. Если атом теперь подвергнется действию лигандов (химически связанных с ним соседних атомов) и возникший при этом комплекс будет иметь симметрию, отвечающую группе С, то исходная сферическая симметрия атома нарушится и вместе с ней изменится исходное вырождение уровней. Квантовые числа I н Мь перестают быть хорошими квантовыми числами, поэтому вместо них следует ввести новые квантовые числа Г и шг, где Г — неприводимое представление группы О, а шг — компонента этого представления, если неприводимое представление Г является многомерным. Мы видели, например, в разд. 6.6 при описании конструирования гибридных орбиталей, что если атом помещен в поле лигандов октаэдрической симметрии (см. рис. 6.4), то его вырожденные -состояния расщепляются на два новых состояния, которые соответствуют неприводимым представлениям Е я Т группы О. Следовательно, исходный пятикратно вырожденный уровень расщепляется на два новых энергетических уровня, один из которых трехкратно вырожден, а другой двукратно вырожден. [c.160]

    В качестве примера рассмотрим атом натрия (конфигурация Для оптической спектроскопии наибольший интерес представляют переходы валентного 35-электрона атома натрия. В этом случае побочное квантовое число I может принимать значения О, 1, 2, что отвечает 5-, р- и -орбиталям. Таким образом, состояния атома описываются термами 5, Р и ). Для установления вида мультиплетов, возникающих из этих термов, следует выполнить векторное сложение орбитального момента Ь со спиновым моментом 5  [c.392]

    Молекула, как и атом, характеризуется мультиплет-ностью электронных состояний. Мультиплетность уровня определяется и обозначается по указанным выше правилам. По отношению к отражению в плоскости симметрии, проходящей через ось молекулы, электронные состояния разделяются на положительные (-1-) и отрицательные (—), что указывается вверху справа у квантового числа Л. Для линейных молекул, обладающих центром симметрии, электронные состояния делятся на четные (g и нечетные (и), что указывается справа внизу у Л. В ряде случаев перед символом терма Л дается дополнительный символ (А, В, С, X,. .., а, Ь, с,. ..), приписываемый каждому конкретному терму и не связанный однозначно со спектроскопическими характеристиками молекулы. [c.649]


    Комбинационный принцип, предложенный Ритцем (1908), заключается в том, что методом комбинации , т. е. сложения или вычитания термов различных серий, можно получить (обратные) значения длин воля линий, имеющихся в спектре данного вещества. Если, например, для спектра водорода основной терм серии Бальмера вычесть из основного терма серии Лаймана, то получается обратное значение длины волны первой линии серии Лаймана. В основе этой закономерности лежит тот факт, что, как будет видно из следующей главы, термы определяют энергетические уровни атома, соответствующие его различным стационарным состояниям (ср. стр. 121). Следовательно, комбинационный принцип утверждает, что атом может переходить из одного стационарного состояния непосредственно в любое другое стационарное состояние (за счет поглощения или испускания света). Здесь следует лишь указать, что если энергетические уровни определяются не только главными квантовыми числами, а и побочными квантовыми числами, то комбинационный принцип нуждается в некоторых ограничениях (ср. стр. 139). [c.134]

    Тот факт, что кислород и в гомеополярных соединениях никогда не проявляет валец,тности больше двух, с точки зрения теории атомной связи объясняется следуюпщм образом в атоме кислорода имеется шесть внешних электронов, находяш ихся на энергетическом уровне с главным квантовым числом п = 2. Согласно принципу Паули (см. стр. 145 и сл.), на таком уровне может находиться максимум восемь электронов. Так как обычно каждая гомеополярная связь образуется парой электронов, для которой каждый из связанных атомов представляет один электрон, то при образовании двух главных валентностей число внешних электронов атома кислорода доходит до восьми, т. е. до максимально возможного числа. Чтобы образовалось более двух валентных связей, по крайней мере один электрон должен подняться с уровня с главным квантовым числом 2 на уровень с главным квантовым числом 3. Как следует из спектральных термов кислорода, для этого надо затратить очень большую энергию, а именно около 210 ккал г-атом. В атомах аналогов кислорода, наоборот, ни одному электрону не надо подниматься на уровень с большим главным квантовым числом, чтобы стало возможным образование более двух гомеополярных главных валентных связей, так как в силу большего значения главного квантового числа внешние энергетические уровни этих атомов могут содержать больше восьми электронов. Впрочем, и в атомах гомологов кислорода, чтобы они проявили валентность больше двух, электроны должны быть подняты на более высокий энергетический уровень, но не с большим главным [c.737]

    Вывод атомных термов наиболее целесообразно рассмотреть на конкретном примере. В качестве такого примера выберем атом или ион с двумя р-электронами, находящимися на одной и той же оболочке, т. е. с одним и тем же главным квантовым числом. В табл. 1 приводятся все вычисленные пары значений магнитных и спиновых квантовых чисел для электронов I и II. [c.10]

    Под действием внешнего магнитного поля на атом может происходить дальнейшее расщепление термов. При этом состояние с квантовым числом полного углового момента J расщепляется на 2/ +1 подуровней, соответствующих числу значений, которые может иметь магнитное квантовое число т. Этими значениями являются —J.....О,. . .,  [c.74]

    Таким образом, все термы 5 щелочных металлов — термы одиночные и отличаются друг от друга лишь значением главного квантового числа. К этим термам относится и основной терм атома щелочного металла, соответствующий нормальному невозбуждённому атому. Так как валентный электрон лития находится в невозбуждённом состоянии во второй электронной оболочке, [c.331]

    Пряменение этих правил можно иллюстрировать рассмотрением некоторых простых случаев. Основным состоянием углерод-нот атома, установленным в результате изучения его спектра, является Р, так что соответствующая электронная структура, не считая заполненных оболочек, представится, очевидно, символами р или р. Поскольку углеродный атом имеет щес к ь электронов, из которых два, несомненно, являются 1х-электронами, то полная конфигурация будет либо 1 28 2р , либо Из этих двух возможных структур первая гораздо более вероятна, так как трудно представить наличие четырех 2/>-электронов, в то время как подгруппа 2в остается вакантной. Эта точка зрения находит свое подтверждение в том, что основные термы двух предыдущих атомов, бериллия и бора, соответственно представлены в своих нормальных состояниях символами и и отвечают, таким образом, электронным структурам 15 2 и is 2s 2p. Дальнейшее подтверждение дается основным состоянием 5 атомарного азота, которое, следовательно, должно соответствовать конфигурации 8 28 2р . Интересно теперь вернуться к указанному в параграфе 1г обстоятельству, что основному состоянию углеродного атома Р сопутствуют два метастабильных состояния и 5, из которых первое отвечает более низкому уровню энергии. Это обстоятельство согласуется с табл. 1, так как, согласно данным этой таблицы, конфигурация обусловливает именно эти три состояния, энергия которых возрастает в последовательности и 5. Поскольку в каждом из указанных состояний электронная конфигурация углеродного атома определяется квантовыми числами /г и /, то для всех трех случаев она будет идентичной, соответствуя структуре 1 2 2 2/ однако при этом имеет место различие в значениях гпц и тп двух 2/з-электронов. В связи с тем же следует указать на наличие метастабильных состояний В и Р атомарного азота и метастабильных состояний кислорода В и 5. [c.22]

    Согласно теории Бора, атом водорода состоит из одного ядра с зарядом +е и одного электрона с зарядом —е, вращающегося по одной из возможных круговых орбит, энергия которой возрастает с увеличением квантового числа п. Каждая орбита соответствует одному терму на рассмотренной выше диаграмме термов (см. рис. 16). При поглощении энергии электрон переходит с орбиты основного состояния (л = 1) на высшую орбиту с большей энергией (л > 1). Когда электрон возвращается на одну из разрешенных орбит, он испускает одну из спектральных линий. Частота испускаемой линии определяется разностью энергий двух орбит (рис. 17). В теории Бора орбита с квантовым числом л = оо соответствует положению, когда электрон, поглотивший очень большую энергию, настолько удален от ядра, что уже не принадлежит атому. Если неподвижный электрон, находящийся на большом расстоянии от ядра, упал бы на одну из разрешенных орбит, то испускалась бы частота, соответствующая границе одной из серий спектральных линий. В действительности электрон, пришедший извне, никогда не бывает неподвижным — он обладает кинетической энергией, которая дополняет энергию орбиты, соответствующей границе серии п — оо). Поскольку кинетическая энергия такого электрона не квантована, полученный спектр имеет участок, который состоит из множества очень близких друг к другу линий, т. е. является сплошным спектром (см. заштрихованный участок на рис. 15) в области малых длин волн. [c.73]

    Тот факт, что кислород и в гомеополярных соединениях никогда не проявляет валентности больше двух, с точки зрения теории атомной связи объясняется следующим образом в атоме кислорода имеется шесть внешних электронов, находящихся на энергетическом уровне с главным квантовым числом и = 2. Согласно принципу Паули (стр. 130 и сл.), на таком уровне может находиться максимум восемь электронов. Так как обычно каждая гомеополярная связь образуется парой электронов, для которой каждый из связанных атомов предоставляет один электрон, то при образовании двух главных валентностей число внешних электронов атома кислорода доходит до восьми, т. е. до максимально возможного числа. Чтобы образовалось более двух валентных связей, по крайней мере один электрон должен подняться с уровня с главным квантовым числом 2 на уровень с главным квантовым числом 3. Как следует из спектральных термов кислорода, для этого надо затратить очень большую энергию, а именно около 210 ккал г-атом. В атомах аналогов кислорода, наоборот, ни одному электрону не надо подниматься на уровень с ббльшим главным квантовым числом, чтобы стало возможным образование более двух гомеополярных главных валентных связей, так как в сипу большего значения главного квантового числа внешние энергетические уровни этих атомов могут содержать больше восьми электронов. Впрочем, и в атомах аналогов кислорода, чтобы они проявили валентность больше двух, электроны должны быть подняты на более высокий энергетический уровень, но не с большим главным квантовым числом, а всего лишь на уровень с большим побочным квантовым числом, а именно на -уровень. Если образуются две валентные связи, такого перехода электронов не происходит, поскольку, как следует из спектров, и у кислорода и у его аналогов основному состоянию атомов соответствует триплетный терм ( Рг)-Это значит, что атомы кислорода и его аналогов в основном состоянии содержат два неспаренных электрона. Следовательно, они могут проявлять валентность два, не требуя какой-либо энергии возбуждения, кроме энергии, необходимой для распада молекул на атомы, тогда как для проявления ими высших валентностей такая энергия возбуждения необходима. Отсюда понятно, почему в чисто гомеополярных соединениях и аналоги кислорода проявляют в основном валентность 2. [c.660]

    Пятый электрон в нейтральном атоме бора уже не может быть электроном 2s (по принципу Паули не существует более двух электронов с /1 = 2, Ij — Q). Он должен иметь / =1, т. е. нормально располагаться в состоянии 2р. Так как нормальное состояние иона бора есть состояние Sq (так же как Bel), а следовательно, характеризуется тем, что для него квантовые числа S, L, J равны нулю, то результирующее состояние нейтрального атома бора определяется движением его самого последнего — пятого — электрона. Отсюда следует, что BI должен обладать простым дублетным спектром, что и наблюдается на опыте. Однако этот дублетный спектр отличается от дублетных спектров щелочных металлов тем, что его нормальным термом является терм р . Обнаруженные в крайней ультрафиолетовой части спектры СII, NIII, ОIV,. .. показывают, что эти ионы построены аналогично нейтральному атому бора. [c.230]


Смотреть страницы где упоминается термин Квантовые числа и термы атомов: [c.222]    [c.183]    [c.453]    [c.433]    [c.278]    [c.324]    [c.330]    [c.334]    [c.124]    [c.39]    [c.148]    [c.320]   
Смотреть главы в:

Краткий справочник физико-химических величин Изд.8 -> Квантовые числа и термы атомов




ПОИСК





Смотрите так же термины и статьи:

Квантовые числа

Термит

Термы

Числа атомов



© 2025 chem21.info Реклама на сайте