Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Четвертичная структура макромолекул

Рис. 43. Схема четвертичной структуры макромолекулы белка Рис. 43. Схема четвертичной структуры макромолекулы белка

    Специфичность четвертичной структуры белков проявляется в определенной конформационной автономии полипептидных фрагментов, входящих в состав макромолекулы белка. [c.349]

    Полимерные образования, в которых мономерами являются макромолекулы белка, называются четвертичной структурой (рис. 40). [c.426]

    Со структурной точки зрения у белков различают первичную, вторичную, третичную и четвертичную структуры. Под первичной структурой, как и в случае пептидов, понимается точная последовательность отдельных аминокислотных остатков в макромолекуле. Вторичная структура определяется тем, что вследствие образования внутримолекулярных водородных связей макромолекулы предпочитают находиться в определенных конформациях (чаще всего это а-спираль — белковая цепь свернута в правовинтовую спираль, а расположенные друг [c.192]

    Некоторые белковые макромолекулы могут соединяться друг с другом и образовывать относительно крупные агрегаты. Подобные полимерные образования белков, где мономерами являются макромолекулы белка, называются четвертичными структурами. Примером такого белка является гемоглобин, который представляет комплекс из четырех макромолекул (рис. 4). Оказывается, что только при такой структуре гемоглобин способен присоединять и транспортировать кислород в организме. [c.20]

    Во всех живых клетках белки синтезируются рибосомами. Рибосома представляет собой крупную макромолекулу со сложной асимметричной четвертичной структурой, построенной из рибонуклеиновых кислот (рибосомных РНК) и белков. Для того чтобы синтезировать белок, рибосома должна быть снабжена а) программой, задающей порядок чередования аминокислотных остатков в полипептидной цепи белка б) аминокислотным материалом, из которого надлежит строить белок в) энергией. Сама рибосома обладает каталитической (энзиматической) функцией, ответственной за образование пептидных связей и, соответственно, полимеризацию аминокислотных остатков в полипептидную цепь белка. [c.7]

    Можно сформулировать два исходных принципа биологической иерархии. Во-первых, в клетке синтезируется множество тождественных макромолекул. Во-вторых, вероятность образования структур высшей сложности из ее элементов возрастает, а число возможных путей формирования такой структуры убывает, если изучаемые структуры можно представить в виде конечного ряда субструктур, последовательно включенных одни в другие. Иерархия свойственна, например, Космосу — звезды образуют галактики, галактики входят в метагалактику и т. д. В биофизике мы имеем дело с атомами, входящими в пептид, с пептидами, образующими белковую цепь, с белковыми глобулами, образующими четвертичные структуры, и т. д. [c.220]


    Денатурация. Денатурация белков — сложный процесс, при котором под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третичной и четвертичной структуры белковой макромолекулы, т. е. ее нативной пространственной структуры. Первичная структура, а следо- [c.16]

    Наличие всех четырех описанных порядков организации макромолекул не обязательно для всех типов белков в частности, может отсутствовать четвертичная структура или в некоторых местах нарушаться спиралевидная конфигурация цепей. Поскольку во многих случаях невозможно установить, вызвано ли характерное свертывание цепи взаимодействием боковых цепей аминокислотных остатков или поперечными связями, некоторые ученые предлагают не применять термины первичная, вторичная и [c.33]

    Книга составлена на основе лекций, читаемых в Ленинградском университете. В ней рассматриваются методы получения и очистки белков, определения их аминокислотного состава и последовательности аминокислот, а также оценки величины и формы белковой молекулы. Наряду с этим в книге излагаются основные химические и физико-химические свойства аминокислот и белков, а также современные представления об уровнях организации макромолекулы белка (первичная, вторичная, третичная и четвертичная структуры). [c.2]

    В заключение необходимо остановиться еще на четвертичной структуре белков. Этот уровень организации возникает благодаря ассоциации нескольких (двух или более) макромолекул (так называемых субъединиц) в единую комплексную глобулу. Примером подобной ассоциации служит молекула гемоглобина, состоящая из четырех пептидных цепей и легко разделяющаяся на две субъединицы, содержащие по две полипептидные цепи. [c.95]

    Среди эффектов, обусловленных влиянием температуры на слабые связи, совершенно исключительный интерес представляют изменения в третичной и четвертичной структуре белков. Эти изменения ясно показывают, каким образом термический разрыв слабых связей может вести к резкому изменению функциональных свойств макромолекул, п, что не менее важно, они подсказывают заманчивую мысль о том, как организмы могли бы обойти некоторые трудности, связанные с изменением температуры или с воздействием крайних температур. Таким образом, нам нужно будет рассматривать изменения в третичной и четвертичной структуре белков с двух точек зрения с одной стороны, они представляют угрозу для функции соответствующих белков с другой — мы не должны исключать возможность того, что иная третичная или четвертичная структура, возникшая при изменившейся температуре, придаст белку новые функциональные свойства, особенно благоприятные для работы этого белка при новом температурном режиме. [c.216]

    Под первичной структурой полифункционального полимера понимается последовательность его мономерных звеньев в цепи, под вторичной структурой — пространственное взаимодействие таких звеньев между собой (в частности, спиральные участки молекул), под третичной структурой — укладка таких участков в целой молекуле полимера. Под четвертичной структурой понимается пространственное расположение отдельных взаимодействующих макромолекул, объединенных в общую единицу (например, четвертичная структура белка может состоять из нескольких субъединиц). [c.359]

    Вообще конформационные эффекты наиболее четко наблюдались для белков. Одна из причин этого — пристальное внимание к вторичной структуре биологических полимеров сейчас можно категорически утверждать, что значительная часть ферментативных реакций и других процессов с участием биополимеров далеко не безучастна к конформации макромолекулы и, более того, к третичной и возможно четвертичной структуре. Именно наличие вполне конкретной конформации макромолекулы обеспечивает осуществление нужной реакции. Приведем только один пример, рассмотренный Моравцем [30]. [c.269]

    Обращает на себя внимание факт, что четвертичная структура определяет каталитическую активность ферментов. Предполагается, что в процессе биосинтеза белков сначала образуются частицы со сравнительно малым молекулярным весом, в пределах 5000—20 ООО, а затем эти частицы путем своеобразной агрегации дают специфические, уникально построенные большие частицы — макромолекулы. [c.45]

    Четвертичная структура реализуется в белках как монодисперс-ные образования, возникшие в результате соединения в одну макромолекулу нескольких полипептидных цепей ( субъединиц ). Этот уровень надмолекулярной структурной организации наблюдается у белков с > 5 10 . Соединение [c.349]

    Межмолекулярное взаимодействие природных макромолекул приводит к формированию четвертичных структур ферментов (кофермент и апофермеит), нуклеопротеидов, [c.101]


    Четвертичная структура — соединение друе с другом макромолекул белков. Образуют комплекс. [c.258]

    Термин четвертичная структура относится к макромолекулам, в состав к-рьк входит неск. полипептидных цепей (субъединиц), не связанных между собой ковалентно. Такая структура отражает способ объединения и расположения этих субъединиц в пространстве. Между собой отдельные субъединицы соединяются водородными, ионными, гидрофобными и др. связями. Изменение pH н ионной силы р-ра, повышение т-ры или обработка детергентами обычно приводят к диссоциации макромолекулы на субъединицы. Этот процесс обратим при устранении факторов, вызывающих диссоциацию, может происходить самопроизвольная реконструкция исходной четвертичной структуры. Явление носит общий характер по принципу самосборки функционируют многие биол. структуры. Способность к самосборке свойственна и отдельным фрагментам Б.-до-меиам. Более глубокие изменения конформации Б. с нарушением третичной структуры наз. денатурацией. [c.250]

    Аналогично тому как аминокислоты, сахара и нуклеотиды служат строительными блоками для белков, полисахаридов и нуклеиновых кислот, так и сами эти макромолекулы в свою очередь являются единицами, из которых собираются более сложные структуры. Волокна, мик-ротрубочки, оболочки вирусов и небольшие симметричные группы субъединиц в олигомерных ферментах — все это варианты строго упорядоченной упаковки макромолекул (которую иногда называют четвертичной структурой). Рассмотрим сначала наиболее простой случай агрегации идентичных белковых субъединиц. Известно, что, хотя форма многих белков близка к сферической, тем не менее они не совсем симметричны. На приведенных ниже рисунках это их свойство несколько преувеличено, чтобы более четко проиллюстрировать общие принципы упаковки. [c.270]

    Макромолекулы белка содержат больший объем информации, чем соответствующие полинуклеотиды, так как они обладают различными третичными (и четвертичными) структурами. Однако белки не способны к автокатализу, к саморепродукции. Они содержат большое количество информации, имеющей малую селективную ценность. [c.545]

    Образование хаотично сформированных агрегатов является ошибкой, которая приводит к появлению функционально неактивных белков, поэтому в клетках предусмотрены механизмы быстрой их деградации и распада на отдельные аминокислоты. Однако в природе существует немало генетически детерминированных агрегатов, включающих в себя несколько полипептидных цепей, образующих большие белковые макромолекулы. Четвертичной структурой называют ассоциированные между собой две или более субъединиц, ориентированных в пространстве. По-видимому, более правильно применительно к четвертичной структуре белков говорить не об агрегатах, а об ансамблях глобул. Характеризуя четвертичную структуру белков, следует исключать ее псевдоварианты. Так, белковый гормон инсулин состоит из двух полипептидных цепей, но они не являются полноправными глобулами, а образуются в результате ограниченного протеолиза единой полипептидной цепи. Не являются белками с истинной четвертичной структурой и мультиферментные комплексы (гл. 6). Они представляют собой типичные надмолекулярные структуры. При образовании четвертичной структуры отдельные субъединицы взаимодействуют друг с другом исключительно при помощи нековалентных связей, в первую очередь водородных и гидрофобных. Весьма существенным является тот факт, что контактные поверхности взаимодействующих субъединиц комплементарны друг другу В контактных участках расположены гидрофобные группировки, которые получили название липкие пятна . [c.39]

    Оказалось, что а- и р-цепи, образующие макромолекулу гемоглобина, имеют много общего в третичной структуре, в частности, почти идентичную степень спирализации. Этот белок достаточно консервативен, так как его третичная и четвертичная структуры у различных видов позвоночных животных приблизительно одинаковы. Гемоглобин и миоглобин представляют единое семейство белков, образованное, возможно, путем дубликации одного предкового гена, что и предопределяет высокую их гомологию и сходные функции. [c.44]

    При рассмотрении деформационного поведения пространственных структур казеина ярко проявляется взаимообусловленность различных уровней структурной организации макромолекул казеина. Так, высший уровень структурной организации — пространственная структура геля, которая имеет сходство (обусловленное высокомолекулярной природой и первичной структурой казеина) с эластомерами, а механизм развития эластических де-форлтаций и закономерности разрушения определяются гетерогенным характером структуры, элементами которой являются агрегаты казеина, представляющие четвертичную структуру этого белка. Последнее обстоятельство и объясняет сходство деформационного поведения и закономерностей разрушения дисперсий казеина с дисперсными неорганическими структурами. [c.143]

    Для Б. с четвертичной структурой характерна кон-формациопная лабильность, имеющая существенное значение для выполнения биологич. функций. Эта лабильность выражается в движении отдельных субъединиц в макромолекуле. При этом могут происходить небольшие измепепии конформации полипетидиых цепей в)1утрп субъединиц. [c.126]

    Четвертичная структура. Этот термин относится к макромолекулам, в состав к-рых входит несколько ио-липептидных цепей (субъединиц). При этом речь идет не о беспорядочной агрегации молекул из одной полипептидной цепи, а об образовании в значительной степени уникальных и, очевидно, монодисперсных макромоле-кул 1Следует отметить, что Б. с четвертичной структурой широко распространены и, по-видимому, этот уровень морфологич. организации типичен для многих Б. с мол. массой больше 50 ООО. Отдельные субъединицы в таких Б. соединены вторичными (водородными, солевыми, гидрофобными, дисульфидными и др.) связями. Разрыв этих связей при действии тех или иных агентов (изменение pH, ионной силы, темп-ры действие мочевины, гуани-динхлорида, детергентов и пр.) приводит к диссоциации [c.122]

    Здесь и далее мы испо.пьзуем термин первичная, вторичная, третичная и четвертичная структуры нуклеиновых кислот в следующем смысле. Первичная структура — последовательность пуклеозндпых звеньев, соединенных фосфо-диэфирной связью в непрерывную и неразветвленную полинуклеотидную цепь. Вторичная структура — в случае одноцепочечных, главным образом монотонных полинуклеотидов, — пространственное расположение нуклеозидных звеньев, обусловленное межплоскостным взаимодействием оснований. В случае двух комплементарных цепей вторичная структура представляет собой жесткую двойную спираль, стабилизованную как ме.жплоскостным взаимодействием соседних оснований в пределах одной цепи, так и водородными связями между противолежащими основаниями в параллельных цепях. Третичная структура образуется в результате реализации наряду с двухспиральными иных типов фиксированной укладки полинуклеотидных цепей. Четвертичная структура — пространственное расположение взаимодействующих макромолекул (обычно полинуклеотидов и полипептидов) в нуклеопротеидах — рибосомах, вирусах и т. д. [c.16]

    Так называемая четвертичная структура фибриллярных белков мало изучена, но если иметь в виду, что эти белхи представляют собой резко асимметричные образования жесткого типа (например, трехтяжные спирали коллагена), то можно полагать, что на различных стадиях синтеза и укладки этих белков важную роль в организации структуры должны играть именно те факторы, которые ответственны за самоупорядочение в растворах жесткоцепных полимеров. Конечно, образование дисульфидных связей, которые накладываются на упорядоченную структуру, значительно осложняет расшифровку стадий процесса, приводящих к конечному строению фибриллярных белков. Но это не является ограничением применимости основных принципов образования жидкокристаллических систем к случаю природной организации белковых тел. Интересные фактические данные о структуре фибриллярных белков, которые могут быть использованы при анализе рассматриваемой проблемы, приводятся в монографии Михайлова [3]. Общие представления о механизме сборки макромолекул были изложены Френкелем [4]. [c.222]

    В свете этих данных стали понятны ранние наблюдения Г. Шрамма, показавшего, что обработка слабой щелочью, снимающей положительные заряды основных аминокислот, приводит к расщеплению частиц ВТМ иа составляющие белковые субъединицы и потере инфекционности. Дальнейшее исследование этого явления привело X. Френкель-Конрата и Р. Вильямса к открытию, что при восстановлении нейтрального значения pH в растворе, содержащем смесь белковых субъединиц и очищенную РНК ВТМ, не только восстанавливается исходная структура вирусных частиц, но и вновь появляется способность заражать растения табака (фиг. 229). Этот эксперимент, так же как и кристаллизация ВТМ за 20 лет до этого, наделал много шума, т. к. он был воспринят как удачная сборка живой молекулы из неживых составных частей in vitro. Менее сенсационный аспект этого открытия заключался в следующем. Было получено веское доказательство важнейшего положения молекулярной генетики,— что вторичная, третичная и четвертичная структуры белка определяются первичной структурой полипептидной цепи и что образование сложных макромолекул ярных объединений происходит путем самопроизвольной сбор- [c.464]

    Кислотно-оснданые и буферные свойства. Белки подобно аминокислотам проявляют кислотные и основные свойства. Однако амфотерность белковых молекул обусловлена главным образом наличием кислотно-ос-новных групп в составе боковых радикалов аминокислот белка, а также концевых сс-амино- и а-карбоксильной групп. У белка с четвертичной структурой число концевых амино- и карбоксильных групп равно числу протомеров. Однако их количество недостаточно для того, чтобы обеспечить амфотерность макромолекулы белка. Кислотно-основные свойства и заряд белковой молекулы главным образом определяются наличием полярных аминокислотных радикалов, большая часть которых находится на поверхности глобулярных белков. Кислотные свойства белку придают аспарагиновая, глутаминовая и аминолимонная кислоты, а основные свойства — лизин, аргинин, гистидин. Слабая диссоциация 8Н-группы цистеина и фенольной группы тирозина (их можно рассматривать как слабые кислоты) почти не влияет на кислотные свойства белков. [c.72]

    Хотя в 1950-е годы еще не было известно пространственное строение на атомном уровне ни у одного белка, тем не менее в то время почти отсутствовало сомнение в том, что белковые молекулы построены из регулярных форм и главным образом из а-спиралей Полинга и Кори, обнаруженных в чистом виде у гомополипептидов. Именно на таком представлении о строении белков основана классификация белковых структур на первичную, вторичную и третичную, предложенная в 1952 г. К. Линдерстрем-Лангом [90]. Под первичной структурой понималась аминокислотная последовательность белка, т.е. его химическое строение, включая дисульфидные связи под вторичной структурой — полностью насыщенные пептидными водородными связями регулярные конформации белковой цепи как целого или ее отдельных участков. Набор взаимодействующих между собой регулярных конформаций а-спиралей, -структур и т.д. образует нативное пространственное строение белковой молекулы, названное Линдерстрем-Лангом третичной структурой. Таким образом, классификация Линдерстрем-Ланга, по существу, представляет собой формулировку принципа пространственной организации белков. Очевидно, разделение пространственной структуры белка на вторичную и третичную является условным и может иметь смысл только в том случае, если пространственное строение макромолекулы действительно представляет собой ансамбль сравнительно немногочисленных канонических форм полипептидов. В то время этот вопрос был далек от своего решения. Позднее иерархия структур Лин-дерстрем-Ланга пополнилась еще одной, четвертичной, структурой, характеризующей агрегацию белковых молекул или достаточно обособленных субъединиц. Примерами белков с четвертичной структурой могут служить гемоглобин, молекула которого состоит из четырех субъединиц, белок вируса табачной мозаики, представляющий собой систему из 200 одинаковых глобулярных молекул. [c.27]

    В трехтомном издании, написанном учеными нз США, на самом современном уровне наложены основные пред-ставлення о биологических макромолекулах и методах исследования их структуры и функций. В первом томе рассмотрены общие принципы организации первичной, вторичной, третичной и четвертичной структуры белков н нуклеиновых кислот, а также строение полисахаридов, нуклеопротеинов и биологических мембран. Книга написана ясно и четко, на очень высоком научном уровне. [c.4]

    Если при функционировании происходят структурные изменения, прежде всего необходимо выяснить, на каком структурном уровне они осуществляются и какие участки в них вовлечень . Можно подумать, что в случае окси- и дезоксигемоглобина (рис. 1.5) главное структурное изменение, сопровождающее оксигенацию, состоит в перестройке четвертичной структуры, но это не обязательно так. Кислород связывается с группами гема, расположенными вблизи участков контактирования четырех субъединиц белка. Но для того, чтобы произошло изменение четвертичной структуры, свойства остатков на поверхности должны быть как-то изменены. Действительно, когда кислород связывается с гемом гемоглобина, атом железа в геме сдвигается, что вызывает ряд небольших изменений третичной структуры, изменяющих поверхность субъединиц. Эти изменения не менее важны для понимания механизма кооперативного связывания кислорода гемоглобином, чем значительно более заметные изменения четвертичной структуры. Иногда в макромолекуле не происходит структурных перестроек при связывании с ней другой молекулы, но зато последняя претерпевает такие изменения. Прекрасным примером такого рода является связывание гексасахарида с молекулой фермента лизоцима. Как показано на рис. 1.12, один из участков связывания сахара в молекуле лизоцима не способен присоединять сахар в нормальной конформации кресла. Для того чтобы произошло такое связывание, сахарное кольцо должно деформироваться и перейти в форму полукресла, что энергетически не выгодно. Тем не менее этот переход осущестмяется, так как затрата энергии с лихвой компенсируется энергией связывания остальных молекул сахара. Грубо говоря, лизоцим способен использовать энергию связывания, сконцентрировав ее в одной точке углеводного комплекса. Это помогает разрыву связи С—О в одном из сахаров, что является частью механизма каталитического действия фермента. [c.34]


Смотреть страницы где упоминается термин Четвертичная структура макромолекул: [c.45]    [c.51]    [c.45]    [c.546]    [c.202]    [c.125]    [c.38]    [c.202]    [c.87]    [c.35]    [c.433]    [c.192]    [c.44]   
Органическая химия (1979) -- [ c.657 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.119 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.119 ]

Органическая химия нуклеиновых кислот (1970) -- [ c.16 ]




ПОИСК







© 2025 chem21.info Реклама на сайте