Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектры комплексы с металлами

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]


    Окраска является отличительным свойством координационных соединений переходных металлов. Октаэдрические комплексы кобальта могут иметь самую различную окраску в зависимости от того, какие группы координированы вокруг атома этого металла (табл. 20-2). Такие координирующиеся группы называются /шгандами. В растворах окраска обусловлена ассоциацией молекул растворителя, выступающих в роли лигандов, с металлом, а не свойствами самого катиона металла. В концентрированной серной кислоте (сильный обезвоживающий агент) ионы Си" бесцветны в воде они имеют аквамариновую окраску, а в жидком аммиаке — темную ультрамариновую. Комплексы металлов с высокими степенями окисления обладают яркой окраской, если они поглощают энергию в видимой части спектра СгО -ярко-желтой, а МПО4-ярко-пурпурной. [c.206]

    Аммиак в комплексных соединениях. Комплексные аммиакаты содержат координированные через атом азота молекулы аммиака М<-МНз (где М — катион металла-комплексообразователя). В ИК-спектрах поглощения аммиачных комплексов металлов молекулам аммиака соответствуют характеристические полосы в следующих областях [c.547]

    Естественно, энергия трех Г2д-орбиталей одинакова то же самое справедливо для двух е -орбиталей. Если вкладом gj пренебречь, разность между энергиями орбиталей и tjg составит Зе - 4е , что в теории кристаллического поля соответствует Д. В комплексе энергии е- и Гг-орбиталей определяются как S/3e + 4/3e и 4/3ej + 8/9е + 16/9 j соответственно. Отметим, что при таких параметрах Д = 4/9До . В комплексах более низкой симметрии добавляются величины энергий всех лигандов и рассчитываются энергии -орбиталей. Численные значения параметров е , и определяют из энергий -орбиталей октаэдрических комплексов. Значения е для различных комплексов параметризуют в соответствии с интегралом перекрывания. Значение описанного подхода состоит в том, что совокупность параметров, полученную для данного лиганда и данного металла, можно использовать для объяснения спектров комплексов многих переходных металлов, если учесть геометрию комплекса и перекрывание. В работе [47] приведены соотношения между Dq, Ds, Dt, 6а, ott и и е . [c.118]

    Инфракрасные спектры комплексов металлов. IV. Сравнение инфракрасных спектров моно- и бидентатных комплексов металлов. [c.182]

    Сложную картину представляют фотоэлектронные спектры комплексов переходных металлов. В связи с наличием -электро-нов в них значительно сильнее, чем у молекул с замкнутыми оболочками, релаксационные эффекты, а порядок расположения уровней у иона и молекулы может быть разным. Для разумной интерпретации спектров этих комплексов необходимо сопоставление их в рядах родственных соединений. Важным моментом при изучении фотоэлектронных спектров комплексов является также то, что -электроны сильнее возбуждаются линией Не (II), чем Не(1а), в отличие от 5- и р-электронов. Поэтому в спектре, возбуждаемом линией Не (II), полосы, относящиеся к ионизации с -орбиталей, интенсивнее, чем в спектре того же образца, возбуждаемом линией Не(1 ). [c.154]


    Инфракрасные спектры комплексов металлов. П. Полосы поглощения координационной воды в аквокомплексах. [c.165]

    Инфракрасные спектры комплексов металлов. III. Инфракрасные спектры оксалатов металлов. [c.231]

    Теперь посмотрим, существует ли соотношение между энергиями диссоциации связей и положениями полос переноса заряда в спектрах комплексов металлов. Эти полосы должны соответствовать возбуждениям ( щ) alg) или 1хи) Имеется, однако, веская причина, из-за которой обнаружить корреляцию вряд ли удастся. Известно, что ионная модель хорошо работает для предсказания энергий диссоциации таких реакций, как (52) [28]. Обнаружены все ожидаемые эффекты вариации заряда и размера иона металла и лигандов, пока донорный атом лиганда достаточно электроотрицателен. К тому же вариации в прочности связей, обусловленные различным числом -электронов, достаточно хорошо объясняются теорией кристаллического поля, которая также использует простую электростатическую модель [36]. [c.305]

    ДАННЫЕ ЯМР-СПЕКТРОВ КОМПЛЕКСОВ МЕТАЛЛОВ С НЕЗАМЕЩЕННЫМИ БУТАДИЕНАМИ-1, 3 (В БЕНЗОЛЕ) [239, 2971 [c.180]

    Имеющиеся данные по ультрафиолетовым спектрам комплексов металлов с я-аллильными лигандами (табл. 31) неполны частично по той причине, что комплексы быстро разлагаются под действием УФ-облучения, особенно быстро идет разложение в растворе. Еще не было сделано попыток интерпретации этих спектров. [c.200]

    ДАННЫЕ УФ-СПЕКТРОВ КОМПЛЕКСОВ МЕТАЛЛОВ С Я-АЛЛИЛЬНЫМИ ЛИГАНДАМИ [c.202]

    При анализе спектров комплексов металлов с МСХ -группами возникают два вопроса 1) какова природа изменения частот при переходе от ионов к координированным группам и 2) какие изменения претерпевают группы МСХ при координировании  [c.166]

    Величина расщепления зависит как от природы лиганда, так и от природы металла и его степени окисления. Следовательно, каждый лиганд можно характеризовать силой поля, которая вызывает расщепление -уровней. В результате экспериментального исследования спектров многочисленных комплексов различных металлов было установлено, что влияние лигандов может быть представлено в виде спектрохимического ряда, где они расположены в порядке возрастания энергии расщепления 1 < Вг- < СЬ < МОз < Р" < ОН < НаО < < 5СК < ЫНд < N0 < СЫ- СО. Назначение этого ряда состоит в том, чтобы ориентировочно предсказать величину расщепления -уровней, а следовательно, и относительное положение полос поглощения в спектрах комплексов данного металла с разными лигандами. В некоторых случаях наблюдается аномальная последовательность для соседних или близко расположенных членов ряда, что необходимо иметь в виду. [c.212]

    Поэтому шесть электронов попарно занимают оставшиеся < й(-орбитали, вследствие чего неспаренных электронов больше не остается, что и обусловливает диамагнетизм системы. Кроме того, теория показывает, что возможная здесь гибридизация типа (1 р обладает октаэдрической симметрией, что полностью подтверждается исследованиями структуры [Fe( N)в] . Однако эти представления недостаточны для того, чтобы объяснить все свойства комплексов. На основе представлений Полинга, например, невозможно правильное истолкование спектров большинства комплексов металлов. [c.128]

    ТКП предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си +, Сг + и др.). Эта теория объясняет цвет соединений, связывая спектры комплексов с — -переходами электронов, а также магнитные свойства комплексов - и /-катионов. Для 5 р -катионов ТКП не дает каких-либо интересных результатов. Она мало пригодна также для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии л-взаимодейст-вия. [c.60]

    Наиболее сложны спектры анионов, входящих в качестве лигандов во внутреннюю координационную сферу комплексов металлов, осо- [c.540]

    Инфракрасные спектры комплексов металлов с органическими лигандами можно разделить на два участка. В области волновых чисел 650—4000 см располагаются полосы поглощения, соответ-ствующие колебаниям атомов лигандов, тогда как в области 50— 650 M- можно обнаружить скелетные колебания структуры, состоящей из металла и донорных атомов. Обычно колебательные спектры комплексных соединений имеются в распоряжении исследователя, так что этим эмпирическим методом можно определить характеристические колебания молекулы лиганда. Однако подход оказывается слишком затруднительным при исследовании колебаний связей металл—донорный атом (за исключением колебаний связей металл—водород), и в большинстве случаев необходим теоретический анализ. [c.90]

    Более детальный анализ ИК-спектров оксалатных комплексов металлов часто позволяет выяснить л другие особенное и их структуры. [c.580]

    Поляризация карбонильной связи, действительно промотируе-мая при координации с ионом металла, подтверждается многочисленными исследованиями инфракрасных спектров комплексов металлов с аминокислотами. Разными исследователями [239] показано, что при координации карбоксильной группы ионом металла силовые константы валентных колебаний связей С—О и С=0 изменяются таким образом, что можно предположить образование более симметричной карбоксильной группы [c.96]


    Большое влияние на цвет орг. соед. оказывает присутствие в его структуре металла. При образовании комплекса создаются новые возможности электронных переходов, обусловливающие появление новых полос поглощения в спектрах комплексов. Появление этих полос связано с переносом электрона с высшей занятой МО (ВЗМО) орг. молекулы (лиганда) на своб. атомную орбиталь металла, с переходом -электрона металла на НЕМО лигавда ( ->я -переход), а также с возможностью - -перехода, к-рый возникает благодаря Синтию вырождения с вакантных -орбиталей металла под влиянием поля лигавда. Обычно - -переходы существенно на цвет комплексов не влияют, т. к. их полосы большей частью находятся в ИК области спектра [c.329]

    В ИК-спектрах соединений 2 3 20 и 2 3 21 в присутствии переходных металлов Со +, N1 +, 2п +, Си + наблюдается сдвиг полосы частоты антисимметричных колебаний карбоксилатной группы, причем можно отметить, что наиболее ковалентный характер связи наблюдается для u +, более ионный— для N1 + н Со +, о чем свидетельствует понижение частоты на 10— 15 см- Наличие в спектрах всех комплексов плеча 1550 см свидетельствует о неравноценности карбоксилатных групп в комплексе Частота полосы позволяет отнести ее к некоординированной ароматической карбоксигруппе В области колебаний г(С—Н) (2930—2990 см ) в спектрах комплексов наблюдается две — три полосы, что свидетельствует о вытеснении бетаиновых протонов ионом металла и наличии в комплексах связи металл — азот Сульфогруппа соединения 2 3 20 в комплексообразовании не участвует [c.247]

    Инфракрасные спектры комплексов металлов. I, Влияние координации на инфракрасные спектры аммино-, роде-нато- и азидокомплексов, [c.164]

    Были также опубликованы инфракрасные спектры комплексов металлов с производными нмидазола [277а] и бетаина [2776]. [c.306]

    В большинстве случаев в спектрах комплексов действительно наблюдается сдвиг частот у(СК), причем как в большую, так и в меньшую сторону. Установить четкую закономерность изменения частот у(СН) в случае одного и тою же лиганда и разных металлов, как и в случае различных лигандов и одного металла не представляется возможным. Так, в комплексах СиСЬ с Р-(диэтиламино)пропионитрилом, К,М-[пропиони-трил-ди(этокси-пропионитрил)амином наблюдается сдвиг частот v( ) к более высоким частотам, а с тетра-(р-цианэтил)этилендиамином, p-(N-мopфoлинo)- и (3-(К пиперидил)-пропионитрилами - к более низким. [c.62]

    Таков в основных чертах фактический лштериал, полученный при исследовании колебательных спектров комплексов металлов с лигандами, содержащими цианогруппы. Попытаемся теперь подойти к качественному объяснению природы изменения связей в комплексах металлов с рассматриваемыми лигандами. [c.175]

    Электронные спектры комплексов переходных металлов можно интерпретировать с помощью теории кристаллического поля. При обсуждении комплексов 0 мы будаЛ заниматься системами с локальной симметрией О,,, хотя симметрия всей молекулярной системы может быть и не такой. При описании типа расположения донорных атомов, непосредственно связанных с металлом, мы не будем строго придерживаться терминов симметрии и не будем учитывать остальные атомы лигандов. Естественно, такое допущение не всегда оправдано. В данном разделе мы рассмотрим, как интерпретировать и предсказывать электронные спектры и как опенить величины наблюдаемого -орбитального расщепления. Мы должны дать представление об эффективном методе координационной химии — использовании электронных спектров при рещснин структурных проблем. Все эти вопросы более подробно обсуждаются в ряде монографий, в которых ссылки на работы, содержащие спектры многих комплексов [1. 2, 4, 5, 9, 10, 12]. [c.88]

    Альтернативным подходом (имеющим несколько преимуществ) к параметризации спектров комплексов переходных металлов может служить модель углового перекрывания [3, 46]. Эта модель исходит из приближенного подхода к энергиям соединений переходных металлов в рамках метода МО. В первую очередь мы рассмотрим простой монокоорди-национный комплекс М—L. Если М — переходный металл, нас больще всего интересуют энергии ii-орбиталей комплекса. Пять iZ-орби-талей комплекса симметрии С охватывают а-, я- и 5-представления, т. е. d(z ] — это ст-представление, d(xK-) и d(yz) — я-представление, а d xy) и d x —y ) — 5-представление. Рассматривая, например, ст-взаимодействие, мы можем записать секулярные уравнения [c.111]

    Для слабых комплексов отношение с2/с мало для основного состояния и велико для возбужденного, т. е. основное состояние почти полностью оп[[сывается несвязывающей волновой функцией, а возбужденное состояние — почти полностью дативной волновой функцией. Поэтому переход из основного состояния в возбужденное сопровождается почти полным переносом одного электрона от донора к акцептору, а возникающая спектроскопическая полоса поглощения называется полосой переноса электрона, или полосой переноса заряда. Такие полосы обычно имеются также в электронных спектрах комплексов переходных металлов, таких, как [c.365]

    Закономерные изменения в спектрах являются следствием закономерностей в изменении схемы энергетических уровней. Расщепление основного уровня дает сведения о стабилизации комплексов в поле лигандов, смещение полос в спектрах комплексов по сравнению с газообразным или акваионом дает нефелоауксети-ческую серию, коррелирующую с характером связи, которая в основном аналогична серии для -металлов. [c.251]

    Для цианидных комплексов металлов, содержащих уже не свободные цианид-ионы, а фрагменты M- N, в которых цианофуппы связаны с катионом металла-комплексообразователя М через атом углерода, характерно наличие трех систем полос в ИК-спектрах поглощения одной — в области -2100—2250 см и двух — в области от -400 до -600 см .  [c.548]

    При концентрациях комплексов с лигандами-радикалами >10-3 М обнаруживается их ассоциация, что приводит к усложнению наблюдаемых спектров. К тому же молекулы комплексов металлов с реагентами— азотоксидными радикалами типа MRn — представляют собой систему из двух или более неспаренных электронов. В зависимости от степени их взаимодействия спектр ЭПР может иметь различный вид. Если взаимодействие между парамагнитными центрами отсутствует, спектр комплекса не отличается от спектра исходного реагента. [c.724]

    Батохромный сдвиг длины волны маиси м ума поглощения Со(II) свидетельствует о том, что при нагревании в аргоне происходит перестройка комплекса (Металла путем замены лигандов. Во-первых, молекула во(ды выходит ИЗ координационной сферы иона металла, что подтверждено спектром безводного ацетата Со, имеющего Ямакс = 528 нм. Во-вторых, анионы ацетата меняются иа соответствующие анио1ны рас-тв орителя, то есть алифатинеакой кислоты, что подтверждено также данными ИК спектроскопнчесних. исследований. [c.29]


Смотреть страницы где упоминается термин спектры комплексы с металлами: [c.355]    [c.116]    [c.116]    [c.264]    [c.198]    [c.199]    [c.173]    [c.50]    [c.105]    [c.166]    [c.210]    [c.195]    [c.312]    [c.86]    [c.235]    [c.18]    [c.144]   
Гетероциклические соединения Т.8 (1969) -- [ c.12 ]

Гетероциклические соединения, Том 8 (1969) -- [ c.12 ]

Основы органической химии (1968) -- [ c.200 , c.201 ]

Основы органической химии 1 Издание 2 (1978) -- [ c.244 ]

Основы органической химии Часть 1 (1968) -- [ c.200 , c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы металлов комплексы металлов

Металло-азо-комплексы

Металлов комплексы

спектр комплексы



© 2025 chem21.info Реклама на сайте