Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение магния сурьме

    Баббиты кальциевые. Метод определения содержания алюминия Баббиты кальциевые. Метод определения содержания магния Баббиты кальциевые. Метод определения содержания олова Баббиты кальциевые. Метод определения содержания сурьмы Баббиты кальциевые. Метод определения содержания висмута Баббиты кальциевые. Метод определения содержания меди [c.580]

    Кобальт. Методы определения свинца Кобальт. Методы определения кадмия Кобальт. Метод определения магния Кобальт. Метод определения сурьмы Кобальт. Метод определения висмута Кобальт. Метод определения олова Кадмий. Технические условия [c.583]


    И магния. Оксалатный метод, который применяется обычно для определения кальция в присутствии магния, неприменим, если кальция очень мало, а магния много. Фосфатный метод определения магния не дает хороших результатов в присутствии большого количества оксалатов. Висмутатный метод определения марганца не оставляет желать лучшего, если раствор не содержит кобальта или хрома. Определение свинца в виде его сульфата дает вполне удовлетворительные результаты, если это определение не пытаются проводить, когда присутствуют барий, кальций, серебро или сурьма. [c.81]

    Химико-спектральное определение бериллия, магния, кальция, бария, алюминия, титана, ванадия, вольфрама, хрома, марганца, железа, кобальта, никеля, меди, серебра, золота, цинка, кадмия, индия, олова, свинца, висмута, галлия и сурьмы в боре, борном ангидриде и борной кислоте Химико-спектральное определение магния, кремния, алюминия, меди, свинца, железа, фосфора, мышьяка, молибдена и натрия в боре..... [c.527]

    В 1958 г. к томам за 1925—1954 гг. издан сводный указатель. По содержанию каждого тома ежегодно печатается отдельным приложением указатель за предыдущий год (том). В журнале имеется специальный раздел Аналитическая химия . Так, например, в вып. 9 за 1963 г. помещена статья В. Б. С п и в а к о в с к и й, Р. Л. Левина, Ускоренное комплексонометрическое определение кальция и магния в силикатах в вып. 1 за 1964 г. — Ю. С. Л я л и к о в, Л. С. К о п а н с к а я. Ускоренный метод определения индия, сурьмы и теллура в полупроводниковых сплавах в вып. 12 за 1965 г. Г. П. П е д а н и я. Ускоренное определение окиси магния в ферритах. [c.59]

    Метод удобно применять для анализа веществ, которые можно выпарить или сублимировать. Он с успехом применен для определения магния в воде, в кислотах и в солях лития, цезия и сурьмы. В последних случаях определение магния производится после высаливания диметилформамидом солей лития и цезия или экстрагирования сурьмы эфиром из солянокислого раствора. [c.259]

    Свинцовые концентраты, основнЫ М компонентом которых является сульфид свинца РЬ5, содержат примеси меди, цинка, сурь мы, мышьяка, висмута, серебра, золота и других металлов. При восстановительной шахтной плавке эти металлы переходят в свинец и загрязняют его. Черновой свинец (веркблей) подвергают огневому рафинированию, удаляя примеси в определенной последовательности. Сначала удаляют медь ликвацией серой, затем сурьму и мышьяк, а также олово путем обработки свинца расплавом едкого натра и селитры (способ Гарриса). Серебро удаляют с помощью цинка, висмут — с помощью магния и кальция В ряде случаев, когда черновой свинец содержит заметные количества висмута и сурьмы, а также серебра, может оказаться целесообразным его электролитическое рафинирование, тем более, что конечным продуктом является свинец высокой чистоты. [c.261]


    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Понтахром сине-черный — один из наиболее распространенных и наиболее важных реагентов для флуориметрического определения алюминия. Реагент использован для определения алюминия в сталях [1252], бронзах [1252], магнии [142], сурьме [294], в минералах [1252], в вольфраме и окиси вольфрама [672]. Смотри также работы [141, 290, 672]. [c.137]

    Многие спектральные методы, разработанные для определения натрия в элементах, применимы для определения натрия в сплавах и соединениях этих элементов. Поэтому такие методы также рассмотрены в данном разделе. Спектральные методы применяют для определения натрия в рубидии [42, 421], магнии [1112], кальции [485], алюминии [537, 690, 820, 844, 956, 974, 1006, 1112, 1114, 1208, 1215], графите [936], кремнии [138], олове [388], свинце [495, 522, 773], ванадии [78], мышьяке [1007], сурьме [115, 149, 1007], ниобии [35], тантале [129], селене [123, 969, ИЗО], теллуре [123, 140, 1198], хроме [406, 679], молибдене [179, 469, 862], вольфраме [35, 469, 798, 898, 1013], уране [156, 589, 1054], осмии [124, плутонии [1245]. [c.163]

    Радиоактивационный метод применяют для определения фосфора в горных породах и минералах [569, 760, 1109], в сталях и сплавах 542, 555, 738], в металлах — алюминии, железе, магнии, селене, теллуре, сурьме, никеле, кальции, литии, натрии, боре, меди и др. [310, 427, 466, 470, 471, 490, 503, 665, 698, 706, 707], в кремнии [134, 812, 836], в карбиде кремния [532, 1080], в окиси бериллия [252] и мышьяке [982]. [c.81]

    Разработана методика химико-спектрального определения меди, свинца, кадмия, висмута, серебра, индия, цинка, алюминия, никеля, кобальта, марганца, хрома, магния, кальция и платины в сурьме высокой чистоты с чувствительностью до 5-10" %. [c.199]

    КОНЦЕНТРИРОВАНИЕ ЦИНКА ИЗ РАСТВОРОВ СОЛЕЙ СУРЬМЫ, СВИНЦА И ОЛОВА СООСАЖДЕНИЕМ С ГИДРООКИСЬЮ МАГНИЯ И ОПРЕДЕЛЕНИЕ ЕГО В ВИДЕ ДИТИЗОНАТА [c.271]

    Видно, что определению натрия, калия, рубидия, цезия, меди, кальция, стронция, алюминия, галлия, индия, скандия, лантана, европия, самария, иттербия, титана, сурьмы, ванадия, вольфрама, хрома, хлора, иода, марганца, железа, кобальта, практически не мешают другие элементы. Такие элементы, как серебро, магний, барий, кадмий, ртуть, золото, олово, мышьяк, селен, молибден, бром, никель, можно определять (с учетом вклада мешающего изотопа) по другим его гамма-липиям или другим гамма-линиям определяемых элементов. Серьезными конкурентами являются евроний, скандий нри определении цинка галлий — для кремния рубидий, золото — для германия бром, серебро — для мышьяка  [c.95]

    Рще лучшие результаты получены при определении элементов с низкой и средней энергией ионизации (менее 9 эВ) при воздействии на дуговой разряд однородного магнитного поля (О/уШ). В работе [225] приведены результаты исследования этого эффекта. Работа выполнена с вертикальной дугой постоянного тока силой 10 А нижний электрод с шейкой, диаметр кратера 4,4 мм, глубина 2 мм верхний электрод заточен на конус аналитический промежуток 3 мм. Напряженность магнитного поля 8, 16 и 24 кА/ м, Угольный пороиюк содержал металлы в виде оксидов магния — 0,00003% алюминия, железа, индия, марганца, хрома, олова, сурьмы, свинца, ванадия— 0,001% цинка—0,01%. При наложении ОМП любой напряженности возрастает эффект прикатодного усиления атомных и особенно ионных линий. Так, при наложении ОМП оптимальной напряженности (8 кА/м) атомные линии Мп 279,4 нм М 285,2 нм Сг 301,7 нм и Ре 302,0 нм усиливаются у катода соответственно в 2,5 3,4 4,2 и 3,2 раза, а ионные линии Мп 294,9 нм Mg 279,6 нм Сг 283,5 нм и Ре 259,8 нм — соответственно в 5,7 4,1 5,3 и 5,2 раза. При наложении ОМП усиление линий начинается уже вблизи анода и достигает максимума в прикатодном участке. Авторы объясняют такое усиление линий эффектом магнитодинамического сжатия плазмы у катода ( пинч-эффект ), благодаря чему происходит увеличение количества частиц элементов в плазме вдоль всего разрядного промежутка по направлению от аиода к катоду. [c.122]


    Для анализа использован атомно-абсорбционный СФМ Перкин-Элмер , модель 303. Условия определения каждого элемента взяты из рекомендаций фирмы-изготовителя прибора. В расчете на анализ 2%-ного раствора достигнуты следующие пределы обнаружения (в мкг/г) литий, натрий — 0,1, калий — 0,3, магний, цинк, кадмий — 0,5, кальций—1,0, серебро—1,5, медь — 2,5, сурьма — 3, железо, никель — 5, свинец—10, алюминий, кремний, олово—50, титан—70, ртуть—100, бор—1000. [c.218]

    В 1962 г. появилось одно из первых сообщений, посвященное определению микроэлементов в нефтях и нефтепродуктах [311] нейтронно-активационным методом. Авторы использовали 200-канальный анализатор и сцинтилляционный Nal(Tl) детектор размером 7,5X7,5 см. Четыре элемента — ванадий, марганец, медь, сурьма — идентифицировали инструментально. Для определения никеля, молибдена, хрома, железа, кобальта применяли их радиохимическое выделение. Отмечены трудности обнаружения свинца и магния. Радиохимическое выделение определяемых элементов в нефти, битумах описано в [395—398]. [c.86]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]

    Метод определения сурьмы Метод определения меди Метод определения висмута Метод определения мышьяка Метод определения цинка и меди Метод определения натрия Метод определения железа Метод огфеделенм кальция Метод определения магния Метод определения олова Метод определения теллура Методы определения серебра Методы определения никеля Спектральный метод определения [c.580]

    Для фторирования смеси восьми окислов, взятых в равных весовых количествах, к пробе добавляют удвоенное количество измельченного фторопласта-4, смесь тщательно растирают и испаряют из канала угольного электрода при дуговом возбуждении. В результате повышается чувствительность определения кремния, магния, алюминия и титана, фториды которых более летучи чем их окислы. Чувствительность определения висмута, сурьмы, кальция и железа не изменяется. Это объясняется тем, что первые два элемента и их соединения и так достаточно легколетучи, а фториды кальция и железа обладают низкой летучестью. Для повышения чувствительности анализа используют [251] реакцию фторирования фторопластом-4 в камерном электроде с независимым электронагревом [252]. Независимый нагрев электрода позволяет сравнительно просто контролировать температуру пробы и управлять ею. Можно и более рационально использовать фракционную разгонку компонентов пробы. [c.93]

    Определение магния в треххлористой сурьме основано на образовании внутрикомплексного соединения магния с бмс-салицилальэтилендиа-мином в среде диметилформамида и способности этого соединения лю-минесцировать голубым светом под действием ультрафиолетовых лучей. Реакция протекает в оптимальных условиях при pH 11,5, которое создается 0,005 М раствором изобутиламина в диметилформамиде. Флуоресценция развивается немедленно и сохраняется неизменной в течение [c.244]

    Для определения магния в треххлористой сурьме навеску образца 0,4 г растворяют в пробирке в 10 мл соляной кислоты, добавляя в процессе растворения 2—3 капли пергидроля. Для отделения сурьмы полученный раствор переносят в делительную воронку емкостью 75—100 мл, приливают равный объем этилацетата и энергично встряхивают 1 мин. Экстракцию сурьмы повторяют четыре ра- [c.153]

    Определение магния в треххлористой сурьме основано на образовании внутрикомплексного соединения магния с бис-салицилальэтилендиамином в среде диметилформамида и способности этого соединения люмипесцировать голубым светом под действием ультрафиолетовых лучей [1]. [c.55]

    Примеры несостоятельности хорошо известных методов при некоторых условиях весьма многочисленны. Метод определения кремневой кислоты выпариванием досуха солянокислого раствора и обезвоживанием сухого остатка дает хорошие результаты в обычном случае, но его нельзя применять в присутствии таких элементов, как бор, фтор, сурьма или висмут. Осаждением смесью едкого натра и углекислого натрия можно очень хорошо отделить алюминий от железа и кальция, но не от железа и магния. Оксалатный метод, который применяется обычно для определения кальция в присутствии магния, ненрименим, если кальция очень мало, а магния много. Фосфатный метод определения магния не дает хороших результатов в присутствии большого количества оксалатов. Висмутатный метод определения марганца не оставляет желать лучшего, если раствор не содержит кобальта илн хрома. Определение свинца в виде его сульфата дает вполне удовлетворительные результаты, если это определение не пытаются проводить, когда присутствуют барий, кальций, серебро или сурьма. [c.75]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Описано электрохимическое восстановление Sb до SbHg [984]. Для определения Sb в органических веществах предложен метод разложения их нагреванием с магнием, в результате чего вся сурьма переходит в MggSb2, который затем разлагают серной кислотой, а выделяющийся SbHg током N2 вытесняют в поглотительную склянку, содержащую раствор окислителя [1191]. [c.117]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Катионы алюминия, сурьмы, мышьяка, бария, бериллия, висмута, бора, кадмия, кальция, церия (III), хрома (III), галлия, германия, железа (III), ланггана, свинца, магния, марганца, ртути (II), молибдена, никеля, ниобия, серебра, стронция, тантала, тория, титана, таллия, олова (IV), вольфрама, урана (VI), ванадия (V), цинка и циркония не мешают определению 10— 15 мкг кобальта, если каждый из них присутствует в количествах, не больших чем 0,1 г [1255]. [c.137]

    Фотометрическое определение в рудах в форме сульфата [745]. Навеску руды разлагают смесью азотной и соляной кислот и раствор выпаривают с серной кислотой. Осаждают медь раствором тиосульфата натрия. При этом железо восстанавливается до двухвалентного состояния. Измеряют оптическую плотность полученного раствора Со804 (после фильтрования) при 520 ммк. Не мешают мышьяк, сурьма, магний, алюминий, кальций, ци к, кадмий, натрий, калий и титан. Допустимо до 0,5 мг/мл марганца и 0,3 мг/мл вольфрама. Мешают хром и ванадий собственной окраской. При больших количествах никеля оптическую плотность измеряют при двух длинах волн— при 400 и 520 ммк и затем вычисляют содержание кобальта. [c.180]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Схема анализа. Приступая к анализу неизвестного вещества или к определению составных частей сложной смеси нескольких веществ, химик-аналитик должен обстоятельно продумать ход анализа. Метод, дающий вполне удовлетворительные результаты при определении того или иного вещества в одном случае, может оказаться совершенно неудовлетворительным в другом. Особенно сильно искажаются результаты определений при анализе сложных смесей. Примеры несостоятельности хорошо известных методов весьма многочисленны. Например, метод определения кремневой кислоты путем выпаривания досуха солянокислого раствора анализируемого вещества и последующего обезвоживания сухого остатка дает хорошие результаты, если кремневой кислоте не сопутствуют примеси, выпадающие вместе с нею в осадок. Но этот метод нельзя применять в присутствии таких элементов, как бор, фтор, сурьма, титан, висмут и др. Осаждением смесью едкого натра и карбоната натрия можно хорошо отделить ионы алюминия от houob железа и кальция, выпадающих в осадок е виде Ре(ОН)з и СаСОд. Но тот же метод непригоден для отделения ионов алюминия от ионов железа и цинка. Оксалатный метод, который обычно применяют для определения кальция в присутствии магния, неприменим, если ионы кальция содержатся в незначительном количестве, а ионы магния—в большом количестве. Определение свинца в виде сульфата дает вполне хорошие результаты, если это определение проводят в отсутствие ионов бария, кальция, серебра и сурьмы. [c.287]

    Определение цинка в треххлористой сурьме. 1 —2 г соли помещают в стакан из термостойкоге стекла, приливают 100 мл 2 N раствора NaOH и 100 мл 6,5%-ного раствора калия-натрия виннокислого, разбавляют водой до 500 мл. Затем прибавляют раствор, содержащий 3 г сульфата магния, подогревают до 90° С, осадку дают отстояться и отделяют его центрифугированием. Осадок растворяют в разбавленной соляной кислоте если раствор мутный, прибавляют несколько капель 6,5%-ного раствора [c.273]


Смотреть страницы где упоминается термин Определение магния сурьме: [c.244]    [c.244]    [c.362]    [c.362]    [c.362]    [c.152]    [c.204]    [c.176]   
Аналитическая химия магния (1973) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение



© 2025 chem21.info Реклама на сайте