Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механические полимерные смеси

    Свое происхождение этот термин ведет от смешения двух жидкостей. Когда жидкости смешиваются с образованием гомогенной и однофазной смеси, то говорят, что такие жидкости совместимы. С термодинамических, кинетических и механических позиций гомогенная однофазная полимерная смесь практически невероятна. [c.33]

    Сополимеры винилхлорида и этилена также могут найти применение во многих областях [25]. Среди новых материалов, которые можно получить в промышленном масштабе, следует отметить поливинилхлорид, совмещенный с полиуретанами [26]. Эти полимерные смеси обладают высокой механической прочностью, устойчивостью к истиранию и твердостью в сочетании с хорошей эластичностью при температурах ниже —40°. Получен также хлорированный поливинилхлорид, совмещенный с привитыми полимерами винилового типа [27]. Эта полимерная смесь обладает повышенной ударной вязкостью в сочетании с высокой температурой размягчения, характерной для хлорированного поливинилхлорида. [c.207]


    Прежде всего для полимерных соединений характерен очень большой. молекулярный вес, колеблющийся в большинстве случаев от 8—10 тысяч до нескольких миллионов. По этой причине молекулы полимеров обычно носят название макромолекул, т. е. больших молекул. Физико-механические свойства полимеров во многом зависят от их молекулярного веса. В связи с тем, что полимеры представляют собой обычно смесь макромолекул различной величины, молекулярный вес полимера является средней величиной молекулярных весов отдельных макромолекул. [c.365]

    Полимеризация, инициируемая механическим путем, легко проходит для различных полимеров, включая обычные термопластичные полимеры [56] (рис. Х1У-15), а также природные полимеры, такие, как крахмал, клей и казеин [57]. Скорость этого процесса обычно увеличивается при добавлении небольших количеств неорганических солей и других порошкообразных материалов [57]. Исходная смесь не должна быть однородной деформированной массой в течение того времени, пока машина создает необходимую энергию сдвига. Однако не обязательно использовать для инициирования полимерные компоненты, их можно заменить порошкообразными материалами, включая поваренную соль и кварц [25]. [c.497]

    При действии сильных механических напряжений на полимеры, например, при продавливании полимеров через капилляры, очень быстром перемешивании или помоле, в условиях, когда макромолекулы не успевают или не могут перемещаться друг относительно друга, в них могут возникать разрывы цепей по валентным связям с образованием свободных полимерных радикалов. Если формование изделия проводится достаточно быстро, то воссоединение радикалов приводит к закреплению образованной формы изделия (Каргин, Слонимский, Соголова). Если подобным воздействиям (механическому крекингу) подвергнуть смесь полимеров, можно после рекомбинации радикалов получить новые химические сочетания полимеров. Берлин применил для временного разрыва связей замораживание набухших полимеров (крахмала, полистирола), используя для механических воздействий изменения объема при замерзании. Подобные химические изменения при механическом воздействии на полимеры составляют область механохимии полимеров. В отличие от обычного течения высокополимеров, при котором макромолекулы постепенно, отдельными участками цепей, передвигаются друг относительно друга, при механохимическом течении передвигаются обломки или фрагменты сетчатой структуры полимера до момента их рекомбинации, что уподобляет этот процесс обратимому разрушению коагуляционных структур. Введение небольших добавок защитных веществ, дезактивирующих свободные радикалы (бутилгидрохинона и др.), позволяет регулировать процесс восстановления структуры, подобно действию добавок поверхностноактивных веществ при коагуляционном структурообразовании. Механохимия полимеров несомненно открывает новые пути в их технологической переработке. [c.254]


    Для получения битумов с хорошими дорожно-строительными свойствами при сложившихся у нас условиях, когда на нефтеперерабатывающие заводы поступает смесь нефтей с химическим составом, изменяющимся в довольно широких пределах, наиболее правильным является подбор и применение рациональных технологических процессов, а также введение в битумы различных добавок (полимерных материалов, поверхностно-активных веществ), которые изменяют упруго-вязкие, термо-механические и адгезионные свойства. [c.94]

    Введение латексов (водных эмульсий полимера) в цементную смесь позволяет достичь как хорошего смешения полимерных частиц с цементным гелем, так и приемлемой степени гидратации [729, 969—971]. Таким путем удается избежать побочных реакций между мономером и компонентами цемента. Исследованы различные полимеры латексы сополимеров винилиденхлорида [237], бу-тадиен-стирольные сополимеры [237], акрилаты [969—971], эпоксидные смолы [900], а также дисперсии меламиновых смол [4]. Типичные механические свойства латексов приведены в табл. 11.2 [969—971]. [c.290]

    При действии сильных механических напряжений на полимеры, например при продавливании полимеров через капилляры, очень быстром перемешивании или помоле, в условиях, когда макромолекулы не успевают или не могут перемещаться друг относительно друга, в них могут возникать разрывы цепей по валентным связям с образованием свободных полимерных радикалов (до Ю —10 на 1 г полимера). Если формование изделия проводится достаточно быстро, то воссоединение радикалов приводит к закреплению образованной формы изделия (В. А. Каргин, Г. Л. Слонимский, Т. Соголова). Если подобным воздействиям (механическому крекингу) подвергнуть смесь полимеров, можно после рекомбинации радикалов получить различные виды сополимеров, в том числе графт- и блоксополимеры. [c.225]

    Таким образом, задача заключалась в исследовании влияния рецептурных факторов на свойства эластичных магнитопроводов, получаемых на основе магнитномягких резин. Независимость действительной части магнитной проницаемости от типа каучука позволяет выбирать каучук по его способности сохранять прочностные и эластические свойства пои высокой степени наполнения грубодисперсным ферритовым наполнителем. Для эластичных магнитопроводов в качестве полимерной основы выбрана смесь изопренового СКИ-3 и нитрильного СКН-18 каучуков, имеющая хорошие технологические свойства и обеспечивающая повышение прочностных показателей высоконаполненных вулканизатов. В качестве магнитного наполнителя использовался ферритовый порошок Ф1 (табл. 2.2). Ниже приведены данные по оценке влияния степени наполнения на магнитную проницаемость и механические свойства магнитномягких резин на основе смеси каучуков СКИ-3 и СКН-18  [c.176]

    Для эластомеров адсорбция на активных наполнителях протекает сложнее, чем для низкомолекулярных веществ. Прежде всего это проявляется в образовании при смешении каучука с наполнителем так называемого саже-каучукового геля, содержащего наполнитель и связанную с ним часть каучука. Эта часть смеси остается в нерастворимом остатке после обработки саже-каучуковой смеси органическим растворителем, в котором исходный полимер растворяется целиком. Таким образом, образующаяся в результате переработки резиновая смесь неоднородна не только из-за наличия дисперсной фазы, но и вследствие наличия связанного каучука, удерживаемого на поверхности активного наполнителя и неотделимого от него обычными способами экстракции. Выяснению механизма и условий образования связанного каучука посвящено много работ [1, 2, 16, 32, 33, 36, 52—56а], однако единая точка зрения до сих пор отсутствует, что несомненно связано с его сложностью. Количество связанного каучука является мерой взаимодействия эластомера с наполнителем. Адсорбционное взаимодействие каучука с наполнителем определяется широким набором связей различной природы. Однако в большинстве случаев исследователи изучают или только физическую адсорбцию полимера на наполнителе, или только хемосорбцию, т. е. возникновение химических связей между активными центрами на поверхности частиц технического углерода и свободными радикалами полимерных цепей, образующимися при механической деструкции каучука в процессах переработки. [c.241]

    Высокодисперсные удобрения при внесении в почву распыли-ваются, а при хранении часто слеживаются в крупные комки или глыбы, что создает большие затруднения при их применении. Поэтому Б настоящее время многие удобрения готовятся в гранулированном виде. Гранулы (шарики по 1—3 мм) обладают механической прочностью, при транспортировке удобрений не разрушаются, не слеживаются. Для внесения в почву их можно непосредственно смешивать с семенами и высевать смесь из обычных сеялок. Удобрения или их смеси, обладающие значительной гигроскопичностью, хранятся в водонепроницаемой упаковке (мешки из нескольких слоев бумаги, пропитанной битумом, или из полимерных пленок барабаны из жести и т. д.), а их кристаллы или гранулы нередко покрываются тонкими защитными пленками из несмачиваемых водой материалов. [c.89]


    Обычно полимерный образец представляет собой смесь гомологов различных молекулярных весов. Средний молекулярный вес и молекулярно-весовое распределение изменяются от образца к образцу. Подобная неоднородность лишь в отдельных редких случаях оказывает влияние на химические свойства образцов, но в значительной степени определяет физические, механические и реологические характеристики полимеров. Данная глава посвящена основным экспериментальным методикам определения молекулярного веса и молекулярно-весового распределения кристаллических полиолефинов и подробному обсуждению некоторых результатов. [c.111]

    Формование ВПС в аппаратах происходит непрерывно, вследствие этого осадитель представляет собой суспензию, где дисперсионной средой является смесь осадителя с растворителем, а дисперсная фаза представлена образовавшимися частицами связующих. В аппаратах разных типов ВПС получают при различии следующих факторов физических свойств дисперсионной среды, которые определяются модулем формования — отношением объемов осадителя и раствора полимера концентрации частиц в суспензии и температуры. Этими факторами обусловлена эффективная вязкость суспензии, которая определяется развивающимися напряжениями и скоростями сдвига, влияющими в свою очередь на кинетику превращения жидких форм полимерной системы и геометрические характеристики ВПС. В связи с этим важно изучение реологических свойств суспензий связующих. В работе [227] рассмотрено течение суспензий ВПС в смеси глицерина и воды с различным содержанием твердой фазы. Кривые течения приведены на рис. 3.19. Полученные зависимости свидетельствуют о наличии физической сетки, образованной механически переплетенными части- [c.141]

    В настоящее время полимерные материалы, используемые для изготовления полимерных пленок, в редких случаях представляют собой индивидуальные полимеры. Обычно в состав материала входят стабилизаторы, пластификаторы, пигменты и красители, наполнители и другие ингредиенты. В этом случае важное значение для оценки возможности введения в состав полимерной композиции того или иного ингредиента имеет так называемая совместимость этого компонента с полимером. Под совместимостью в эксплуатационном (технологическом) отношении понимается способность двух компонентов образовывать смесь с удовлетворительными механическими свойствами [46], сохраняющую свою структуру и свойства в течение времени, определяемого технологической или эксплуатационной необходимостью [93]. [c.68]

    Анализ диаграммы и кривых охлаждения свидетельствует, что при содержании масла более 5 - 10% в полимерном материале появляется обогащенная жидкостью фаза (на схемах структуры эта фаза зачернена), которая вначале располагается по границам структурных образований, формируя своеобразную систему капилляров. При этом прочность материала изменяется незначительно при сохранении высокой деформативности материала, что является характерным для твердых растворов [46], составляющих основу материала при данном содержании пластификатора. В области диаграммы, соответствующей содержанию масла 30 - 50%, имеет место перитектическое превращение, в результате которого при охлаждении ниже температуры этого превращения (точка Гп) образуется смесь кристаллов V- и Р-твердых растворов. Выделение в качестве первичной фазы, обогащенной пластификатором (Р), отражается на структуре и свойствах материала. Формируются ячейки, близкие по форме к сферическим, заполненные веществом с высоким содержанием пластификатора. Прочность материала снижается, поскольку сокращается объем фазы с высоким содержанием полимера (7-фаза), обладающей повышенной прочностью. По этой же причине снижается деформативность материала. Зато в расславленном состоянии жидкотекучесть материала значительно возрастает, подобно тому как это происходит и для сплавов низкомолекулярных веществ, образующих при охлаждении механическую смесь кристаллов различных фаз [ЗЗ]. [c.104]

    Без цемента нет бетона-эта, казалось бы, азбучная истина уже начинает терять свое значение. Новый, все более широко внедряемый в строительство силикатный бетон состоит в основном из смеси извести и кварцевого песка (или золы угольных фильтров). Его отверждают по особому методу с добавлением воды при температуре 180-200°С и давлении 10-12 бар. При этом образуется, как и в случае бетона на основе цемента, твердая, как камень, смесь гидратированных силикатов кальция с пределом прочности при сжатии около-15 Н/мм . Путем интенсивной механической активации исходного песка и с помощью других мер можно промышленно изготавливать сорта силикатного бетона с прочностью почти 50 Н/мм . Их можно использовать для крупноформатных и самонесущих строительных элементов. В лабораторном масштабе удалось даже достичь прочности 350 Н/мм . Представляют интерес перспективные сорта бетона с полимерной структурой. Такой бетон легок, и в то же время в него можно забивать гвозди. Полимерная структура создается обычно введением алюминиевого порошка в качестве расширительной добавки. Силикатный газобетон, как, впрочем, и ксилолит, характеризуется высокими теплоизоляционными [c.254]

    Для повышения физико-механических свойств покрытий применяются наполнители. Наполнитель должен обладать высокой степенью дисперсности, термостойкостью и инертностью по отношению к полимеру. Введение наполнителей в порошковую смесь повышает ее вязкость и приводит к изменению технологических параметров процесса формирования покрытия вследствие изменения реологических свойств расплава полимера. Большое содержание наполнителей может привести к ухудшению параметров псевдоожижения полимерных композиций. Введением некоторых наполнителей можно изменять структуру покрытий на основе кристаллических полимеров. [c.111]

    Сократительные эласто-осмотические полимерные пленки могут быть изготовлены способом выпаривания воды из смеси водных растворов полиакриловой кислоты (ПАК) и поливинилового спирта (ПВС). Смесь выливается в плоскую ванну, например из плексигласа, и после высыхания раствора при комнатной температуре образуется пленка, легко отделяемая от основы. Для придания нерастворимости пленку нагревают при температуре 120—130° С в течение 30—90 мин. Подробно этот рецепт приведен в работе [40]. Такие пленки сильно набухают в воде, переходя в гелеобразное состояние. Если заменить воду кислотным раствором, то пленка ПАК + ПВС сокращается. В щелочной среде она вновь набухает. При поочередной замене кислотного раствора щелочным происходит реверсивное изменение размеров пленки, и она может производить полезную механическую работу. [c.130]

    Широкому применению двойного сополимера СКЭП препятствует необходимость введения специальных агентов вулканизации — пероксидов в качестве вулканизующего агента. Добавка в полимерную смесь третьего мономера,. о.яволяющего ввести в цепь двойные связи, например этилиденнорборнена, обеспечивает возможность вулканизации обычнымп системами, содержащими ускорители и серу. В тройном сополимере двойные связи иаход-ят-ся в боковых группах, поэтому он стоек к термоокислительной деструкции и механическим воздействиям. [c.117]

    Пластификаторы. Один из методов получения изоляционного материала с заданными свойствами - это пластификация, т.е. введение в битум веществ, химически не взаимодействующих с ним, но образующих Гомогенную систему. Пластификаторы предназначены для повышения пластичности изоляционных материалов при нанесении их в условиях температур до -25 С. Пластификаторы считаются эффективными, если при введении их в битум наряду с приданием мастике упругопластичных свойств наблюдается минимальное снижение вязкости и температуры размягчения. Лучшими пластификаторами являются полимерные продукты - полнизобутилен с различной относительной молекулярной массой и полидиен. Менее эффективны а) масло осевое - неочищенные смазочные масла прямой перегонки нефти с кинематической вязкостью при температуре 50 °С 0,12-0,52 см /с содержанием механических примесей не более 0,07 % и воды не более 0,4 %, температурой вспышки не ниже 135 °С и температурой застывания не выше -55 °С б) масло зеленое - продукт пиролиза нефтепродуктов плотностью около 970 кг/м , с содержанием серы не более 1 % и воды не более 0,2 % в) лакойль - смесь полимеризованных углеводородов пиролиза нефти и кислого гудрона, получаемого при очистке легкого масла серной кислотой с вязкостью при 50 С от 0,035 до 0,16 см /с, температурой вспышки не ниже 35 С, содержанием воды не более 2 % г) масла автотракторные (автолы), трансформаторные. [c.81]

    Специфической особенностью полимеров линейной и разветвленной структуры является их высокая степень молекулярной нолидиснерсности. В процессе синтеза полимерного соединения обрыв роста каждой макромолекулы происходит на различной стадии, поэтому они различаются по величине, т. е. по степени нолимеризации. Следовательно, линейный или разветвленный полимер представляет собой весьма сложную смесь макромолекул, отличных по степени разветвленности, длине боковых ответвлений и размеру основной цепи. Степень полидисперсности полимера возрастает, когда синтез го проводится в присутствии растворителей, при увеличении количества инициатора или катализатора, вводимого в мономер, и при повышении температуры. Полимеры, в которых содержится большое количество фракций низкого молекулярного веса, имеют низкую температуру размягчения, высокую пластичность в размягченном состоянии, более низкую механическую прочность. [c.763]

    Основные компоненты зубной пасты следующие абразивные, связующие, загустители, пенообразующие. Абразивные вещества обеспечивают механическую очистку зуба от налетов и его полировку. В качестве абразивов чаще всего применяют химически осажденный мел СаСОз. Установлено, что компоненты зубной пасты способны влиять на минеральную составляющую зуба и, в частности, на эмаль. Поэтому в качестве абразивов стали применять фосфаты кальция СаНР04, Саз(Р04)2, Са2Р20г, а также малорастворимый полимерный метафосфат натрия (ЫаРОз) с. Кроме того, в качестве абразивов в различных сортах паст применяют оксид и гидроксид алюминия, диоксид кремния, силикат циркония, а также некоторые органические полимерные вещества, например метилметакрилат натрия. На практике часто используют не одно абразивное вещество, а их смесь. [c.104]

    Полициклизацией арилендиоксо- и арилендиоксибис(нафталевых) ангидридов, содержащих центральные гексафторнзопропилиденовые группы, с бис(о-фени-лендиаминами) синтезированы полинафтоиленбензимидазолы с С(СРз)2-группами по полимерной цепи [80, 85]. Эти полимеры сочетают растворимость в сильных кислотах и фенольных растворителях (л<-крезол, смесь ТХЭ-фенол) с высокой термо-, тепло- и огнестойкостью, хорошими механическими и электрофизическими характеристиками. Их температуры размягчения лежат в пределах 350-405 °С, а температуры 10%-го уменьшения их исходной массы на воздухе, согласно данным ТГА, составляют 500-560 С, кислородный индекс - 56-67, прочность пленок на разрыв - 970-1210 кгс/см . [c.225]

    Пористые полимерные сорбенты различных типов пoлyчaюt методом суспензионной полимеризации, когда смесь мономеров и сшивающих агентов полимеризуется в среде инертного разбавителя в присутствии катализатора. Образующаяся в частицах на первых стадиях микроструктура геля постепенно преобразуется в матричную структуру, в которой внутренние полости заполнены инертным разбавителем. После высушивания и вакуумирования созданная пористая структура сохраняется и образуются достаточно однородные по размерам частицы сорбента с достаточно хорошей механической прочностью, которыми можно заполнять хроматографические колонки сухим методом. Выбрав подходящую систему мономеров, сшивающего и инертного разбавителя, можно получить полимерные сорбенты с различными функциональными группами и различной пористой структурой. В табл. II.3 приведены свойства наиболее распространенных зарубежных и советских полимерных сорбентов. Как видно из приведенных данных, свойства пор1истой структуры изменяются в очень широких пределах. В соответствии с общим правилом, чем больше размер пор, тем быстрее массообнен в порах и выше скорость анализа. Пористые полимерные сорбенты с размерами пор менее 10 нм наиболее подходящи для анализа газов, тогда как сорбенты с размерами пор более 10 нм позволяют разделять относительно высококи-пящие вещества. [c.93]

    При смешении двух химически разнородных полимеров обычно образуется двухфазная смесь. Аналогичные эффекты Наблюдаются и в тех случаях, когда композиционно разнородные элементы представляют собой части одной и той же полимерной цепи, как это имеет место, например, у блоксоиолимеров. Критерием образования единой фазы является отрицательное значение свободной энергии смешения. Однако это условие редко реализуется на практике, поскольку малых значений энтропии смешения обычно оказывается недостаточно для перекрывания положительной энтальпии смешения. Несовместимость полимеров в смеси определяет механические характеристики последней и может быть желательной или нежелательной в зависимости от области применений конкретного материала. [c.83]

    Разрыв полимерных цепей под влиянием механических воздействий сопровождается образованием радикалов на разорванных концах цепей. Используя радикалы обработанных таким образом полимеров для инициирования полимеризации мономера, синтезирова.ти блок-сополимеры. Когда смесь двух полимеров подвергается механическому воздействию, блок-сополимеры образуются в результате взаимодействия макрорадикалов различной химической природы. Практически полученные продукты представляют собой смеси привитых и блок-сополимеров, поскольку в некоторых случаях в результате реакции передачи цепи свободный радикал образуется не на конце полимерной цепи. Кроме того, поскольку стирол является единственным мономером, при полимеризации которого, как было показано, обрыв цепи происходит в результате рекомбинации, обрыв цепи двух полимерных радикалов должен происходить в результате диспропорциопировапия с образованием одной полимерной цепи, содержащей на конце двойную связь. При сополимеризации этой цепи со свободным полимерным радикалом образуется привитой сополимер. [c.278]

    В настоящей работе проведено реологические исследования наполненных эпоксидно-каучуковых смесей, где щгтем изменения химической природы эпоксидных олигомеров и жидких каучуков менялось их сродство, которое оценивалось по разности величин параметров растворимости. Характер образующейся структуры оценивался по кривым течения композиций, а также по величине энергии активации вязкого течения. Вми исследованы реологические свойства смесей неотвержценннх олигомеров, а также системы, наполненные порошком алюминия со сферической формой частиц. Обнаружено, что величина относительной вязкости (отношение вязкостей наполненного и чистого олигомеров) для систем с бутадиеннитрильными каучуками падает с увеличением содержания в них акрилонитрила. Показано, что в плохо совместимых наполненных олигомерах образуется коагуляционная структура из-за отсутствия на поверхности твердой фазы достаточно эффективного адсорбционного слоя, способного препятствовать контактам между частицами. Выявлено влияние активного наполнителя на механические свойства наполненных материмов, предложен способ бценки их прочностных характеристик. Показано,-что введение алюминия в смесь эпоксидной смолы с бутадиеннитрильными каучуками с близкими значениями параметров растворимости приводит к упрочнению полимерной матрицы. [c.146]

    СМЕСИТЕЛИ для полимерных материалов (mixers, Mis her, melangeurs) — аппараты, предназначенные для приготовления полимерных композиций методом смешения. По назначению различают С. для сыпучих материалов, жидких маловязких систем и высоковязких ньютоновских сред. По способу перемешивания С. могут быть механическими (наиболее распространенные), гравитационными (только для сыпучи ), пневматическими, гидравлическими (только для жидких систем). С. подразделяют также по конструктивным особенностям рабочего органа, воздействующего на смесь, по принципу действия (периодические и непрерывные). [c.210]

    Поскольку один наполнитель, как правило, не может удовлетворять всем предъявляемым требованиям, в ряде случаев применяют смесь наполнителей. Весьма эффективно использование смеси, состоящей из двух наполнителей, имеющих различную форму, например волокон и стеклянных микросфер. При правильном выборе размера частиц наполнителей более мелкие частицы располагаются внутри обогащенных связующим областей, образованных более крупными частицами, и вытесняют полимерное связующее. Это улучщает смачивание частиц связующим и повыщает текучесть композиции и механические свойства отвержденного материала 1[137]. [c.102]

    В образовании связей наполнитель — полимер участвуют свободные полимерные радикалы, поэтому на про-десс существенно влияют входящие в резиновую смесь такие активные компоненты, как проти остарители, ускорители вулканизации и др., а следовательно, и порядок введения в смесь этих ингредиентов. Таким образом, энергетическая и химическая неоднородность поверхности наполнителя, а также частиц полимера, появляющаяся, в частности, благодаря действию механического поля при смешении, приводит к возникновению набора связей наполнитель — полимер разной прочности. В этих условиях, с одной стороны, жестко связывается часть полимера, формируется приграничный межфазный его слой со свойствами, отличными от [c.60]

    Масла ТСЗ-9-ГИП и ТСЗп-9, имеющие лучшие низкотемпературные свойства, готовят смешением маловязких масел МС-8 или трансформаторного с высоковязким маслом МС-20с, загущая эту смесь до вязкости при 100 °С не менее 9 мм / (9 сСт) полимерной присадкой, стойкой к механической деструкции. В качестве загущающих присадок используют в основном полиизобутилен и полиметакрилат. Кроме того, в масла вводят противсизнос-ные, противокоррозионные, противопенные и депрессор-ные присадки. [c.90]

    Смесь каучука и сажи можно приготовить и без участия реакции механического разрыва. Один из способов получения такой смеси заключается в растворении каучука в бензоле, диспергировании наполнителя в полученном растворе при помощи шаровой мельницы и вымораживании растворителя из полученной дисперсии . При растворении изготовленной таким способом и невальцованной смеси сажа полностью выделяется из раствора каучука. Если же эту смесь пропустить хотя бы один раз через зазор холодных вальцов, вся сажа и значительная часть каучука останутся в набухшем геле. Образовавшийся гель ведет себя подобно слабо сшитой полимерной сетке, не растворяясь в обычных растворителях каучука и обратимо набухая в них до равновесного состояния, характеризуемого объемной долей каучука в набухшем геле. [c.204]

    По данным работы [156], при создании дублированных и нетканых материалов различного назначения из смесевых олигомерно-полимерных композиций могут быть получены клеевые слои и покрытия с высокими физико-механическими характеристиками. Композицию получали путем совмещения концентрированных растворов полиамида АК 50/50 и фенолоформальде- гидного олигомера резольного типа марки Б в этаноле. При этом к 20%-ному раствору полиамида, имеющему температуру 50—55°С, добавляли 66,8%-ный раствор фенолоформальдегид-ного олигомера. Смесь перемешивали и нагревали при 95—98 °С. [c.128]

    Из поливинилхлоридной смолы изготовляют мягкие материалы, эластичные как при комнатной, так и при пониженных температурах. Для получения их в поливинилхлоридную смолу вводят значительное количество пластификатора, главным образом низкомолекулярную жидкость, и реже полимерное вещество с большим молекулярным весом. Обычно пластификатор вводят в полимер, растворяя его в полимере с образованием твердого раствора. Процесс введения пластификатора в поливинилхлоридную смолу иазывают пластифицированием. Часто процесс растворения пластификатора в поливинилхлориде иазывают совмещением пластификатора оо смолой или же желатинизацией. Практически важны только такие пластификаторы, которые обладают низкой температурой замерзания и достаточно высокой температурой кипения для того, чтобы при технологической обработке материала они незначительно испарялись и большая часть их оставалась бы в готово.м изделии. Обычно Смесь двух пластификаторов оказывает более пластифицирующее действ1ие, чем каждый, из пластификаторов в отдельности. Влияние количества пластификатора яа изменение физико-механических свойств пластиката видно из табл. 20. [c.290]


Смотреть страницы где упоминается термин Механические полимерные смеси: [c.128]    [c.49]    [c.477]    [c.434]    [c.254]    [c.78]    [c.124]    [c.209]    [c.53]    [c.19]    [c.210]    [c.152]   
Смотреть главы в:

Полимерные смеси и композиты -> Механические полимерные смеси




ПОИСК





Смотрите так же термины и статьи:

Механические свойства полимерных смесей

ПОЛИМЕРНЫЕ СМЕСИ

Физические и механические свойства полимерных смесей



© 2025 chem21.info Реклама на сайте