Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хемосорбция активирования

    Четкое различие между физической адсорбцией и хемосорбцией отсутствует. Можно лишь сказать, что при хемосорбции теплота адсорбции значительно больше. К тому же, если молекула в процессе адсорбции диссоциирует в силовом поле металла, то этот критерий вообще теряет свое значение [207]. Не дает полного представления о характере адсорбции и энергия активации, хотя в большинстве случаев процесс хемосорбции активирован, а физическая адсорбция протекает практически без активации [208]. [c.183]


Рис. У1П-16. Влияние температуры на физическую адсорбцию и хемосорбцию (активированную адсорбцию) Рис. У1П-16. <a href="/info/15368">Влияние температуры</a> на <a href="/info/3229">физическую адсорбцию</a> и хемосорбцию (активированную адсорбцию)
    Физической адсорбцией называется процесс, характеризующийся слабым взаимодействием между газом и адсорбентом, а химической адсорбцией, или хемосорбцией (активированной адсорбцией), — сильное взаимодействие, типа химической реакции. [c.21]

    Однако не всякая поверхность твердого тела обладает ката — литической активностью. На поверхности одних веществ может происходить лишь физическая адсорбция, а других — хемосорбция с более прочной химической связью. Так, на поверхности активированного угля водород и азот могут адсорбироваться лишь физически, а кислород и при высоких температурах водяной пар подвер — гаются химической адсорбции и при их десорбции выдел [ются не О и HjO, а продукты их хемосорбции в виде СО, СО и Н . Это свидетельствует о том, что тип и прочность промежуточной (то есть [c.85]

    Активированная адсорбция, или хемосорбция [c.273]

    Кобл и Корриган создали эмпирический метод определения постоянных и, К и п. Этот метод, разработанный для хемосорбции одного компонента, применялся к адсорбции метана, пропана, этилена и пропилена на активированном угле. Оказалось, что только адсорбция метана описывается уравнением Лэнгмюра. Для других газов было применено общее уравнение адсорбции. [c.113]

    Получение винилацетата методом винилирования состоит во взаимодействии ацетилена с уксусной кислотой. В качестве катализатора применяют ацетат цинка, нанесенный на активированный уголь. Гетерогеннокаталитическое взаимодействие ацетилена с уксусной кислотой проводят в газовой фазе при 170—220°С. Механизм реакции состоит в хемосорбции ацетилена с образованием п-комплекса с ионом цинка, внутрикомплексной атаке активированной молекулы ацетилена ацетат-ионом и заключительном взаимодействии с уксусной кислотой  [c.299]

    Механизм действия гетерогенных катализаторов в данном процессе состоит в активировании связи С—О в спирте за счет хемосорбции на кислотных центрах  [c.290]

    Другие процессы хемосорбции. Такие соединения, как перекиси, производные озона и другие кислородсодержащие соединения (—О—О—), легко переводятся в более простые соединения в присутствии катализатора. В ряде случаев таким материалом может быть активированный уголь, однако большинство соединений разлагается только в тех случаях, когда на уголь нанесен металлический катализатор, например металлическая медь, серебро, платина и палладий, которые наносятся на подложку из растворов их комплексных солей. [c.181]


    Активированная адсорбция, или хемосорбция, обусловлена проявлением химических, валентных сил между адсорбированными молекулами и атомами поверхности твердого тела. [c.426]

    За период с 1916 по 1922 гг. опубликован ряд блестящих исследований И. Лэнгмюра [И] по поведению и свойствам мономолеку-лярных пленок, по адсорбции и хемосорбции твердыми поверхностями. К этому же периоду относятся интересные исследования по адсорбции, проведенные Н. Адамом [12] и Дж. Мак-Беном [13]. П. А. Ребиндер и А. А. Трапезников [14] изучили структурно-механические свойства мономолекулярных пленок различных органических соединений на воде и растворах Н. Д. Зелинский [15], М. М. Дубинин [16] и другие провели многочисленные исследования по активированию углей, по адсорбции твердыми веществами, по теории адсорбции. Перечисленные главнейшие работы позволили близко подойти к пониманию поверхностных явлений и гетерогенного катализа. [c.92]

    Различают следующие виды сорбции 1) абсорбция—проникновение газа в массу сорбента (абсорбента), что в результате дает твердый раствор абсорбция характеризуется малой скоростью и длительным временем для завершения 2) адсорбция—поверхностная сорбция или уплотнение газа (пара) на поверхности сорбента (адсорбента) за счет сил притяжения (силы Ван-дер-Ваальса). Скорость адсорбции зависит от характера поверхности на гладких поверхностях она протекает с очень большой скоростью, на пористых—замедляется (диффузия в тонкие поры), но весь процесс в том и другом случаях протекает в несколько секунд или минут 3) капиллярная конденсация—сорбция пара или газа с конденсацией в порах адсорбента, которая протекает очень быстро 4) хемосорбция—адсорбция паров или газов на поверхностях силами остаточных валентностей с образованием химического соединения в виде мономолеку-лярного слоя сюда же относятся, по существу, и процессы активированной адсорбции (стр. 116). [c.93]

    Для явлений хемосорбции и катализа интерес представляет не вся поверхность, а лишь ее полезная часть , на которой и протекает активированная адсорбция, причем интенсивность последней топографически и энергетически неравноценна. Степень ненасыщенности атома в поверхностном слое зависит от его положения в кристаллической решетке. Если атом находится в ее плоской части, он ненасыщен только в направлении, перпендикулярном к поверхности. Если же атом находится на ребре, в углу кристалла или иа участке с малым радиусом кривизны, он значительно менее связан с поверхностью и, наоборот, будет обладать большей ненасыщенностью, а отсюда большей способностью к адсорбции. Г. Тейлор (1926 г.) дает следующую условную схему строения поверхности восстановленного никеля  [c.109]

    Между хемосорбцией и активированной адсорбцией существует различие, не учитываемое многими авторами, что и явилось причиной выделения последней в особый раздел. [c.120]

    Оба типа адсорбции связаны с реакцией между поглотителем и реагентами. Однако при активированной адсорбции взаимодействие ограничено поверхностным слоем атомов и продукты реакции удаляются нагреванием или отсасыванием. При хемосорбции образование химического соединения может не ограничиться лишь поверхностным слоем, но распространиться на более глубокие слои и тогда продукты полностью удалить нельзя. Таким образом, хемосорбция может быть причиной необратимого отравления катализаторов. [c.120]

    Из указанного видно, что не только число, но и природа активных центров играют решающую роль в катализе. Вероятно, на пиках процессы протекают через активированную адсорбцию, на линиях имеет место и менее благоприятная хемосорбция. [c.120]

    В заключение можно отметить, что между обычной физической адсорбцией,хемосорбцией и активированной адсорбцией существуют более или менее резкие различия (табл. 14). [c.120]

    ДО дает восстановленный катализатор и продукты реакции. Этот механизм возможен при взаимодействии одной молекулы окисляемого ве-и ества с одной молекулой кислорода, однако при глубоком окислении, когда по стехиометрии для реализации процесса необходимо участие в реакции большого числа молекул кислорода, механизм становится маловероятным (например, для окисления одной молекулы этилена в элементарном каталитическом акте должны одновременно участвовать три молекулы кислорода, для окисления более сложных молекул необходимы десятки молекул кислорода). Стадийный механизм включает по крайней мере две стадии процесса, при этом вначале происходит стадия диссоциативной хемосорбции кислорода на катализаторе с образованием активированного комплекса. На второй стадии молекула окисляемого вещества взаимодействует одновременно с несколькими активированными комплексами с образованием продуктов реакции и восстановлением катализатора. При гетерогенно-гомогенном радикально-цепном механизме катализатор облегчает наиболее энергоемкий этап цепного процесса - зарождение цепей. Образовавшиеся радикалы органических веществ десорбируются в газовую фазу, давая начало объемному развитию цепи. Гомогенные стадии в гетерогенно-гомогенном катализе изучены пока недостаточно глубоко. Многочисленные экспериментальные данные по глубокому окислению углеводородов часто проти- [c.11]


    Как уже отмечалось, поверхность углерода чрезвычайно неоднородна, что делает ее участки в различной степени доступными для адсорбции. Многие исследователи приходят к выводу, что при сравнительно низких температурах только небольшая часть поверхности углерода доступна хемосорбции. Хемосорбция заметно зависит от температуры, возрастая с ее увеличением. Тейлором была разработана теория активированной хемосорбции и показано, что хемосорбции, как и другим видам химических взаимодействий, присуща энергия активации. В силу того, что с ростом температуры в хемосорбцию вовлекаются все новые, менее активные участки поверх- [c.142]

    Изотерма адсорбции Ленгмюра. Адсорбция атомов или молекул осуществляется либо под действием межмолекулярных сил (физическая адсорбция), либо с образованием химической связи (хемосорбция или активированная адсорбция). Адсорбция зависит не только от площади поверхности, но и от концентрации (парциального давления), а также от температуры. В случае физической адсорбции количество адсорбированного вещества уменьшается с ростом температуры, а при хемосорбции оно, как правило, увеличивается. Следует, однако, помнить. [c.187]

    Хемосорбцию называют также активированной адсорбцией.- Она происходит за счет валентных связей и характеризуется высоким тепловым эффектом. [c.94]

    АДСОРБЦИЯ — поглощение газов или растворенных веществ из раствора поверхностью твердого тела нли жидкости. А.— один из видов сорбции. Происходит под влиянием молекулярных сил поверхностного слоя адсорбента. В некоторых случаях молекулы адсорбата (вещества, которое поглощают) взаимодействуют с молекулами адсорбента и образуют с ними поверхностные химические соединения (см. Хемосорбция). При постоянной температуре физическая А. увеличивается при повышении давления или концентрации раствора. Процесс, обратный адсорбции, называется десорбцией. А. сопровождается выделением теп 1а. При повышении температуры А. уменьшается. А. применяется в промышленности для разделения смесей газов и растворенных веществ, для осушки и очистки газов (например, воздуха в противогазах), жидкостей (этиловый спирт очищают от сивушных масел активированным углем). А. играет большую роль во многих биологических и почвенных процессах. Большое значение имеет адсорбция радиоактивных элементов стенками посуды или поверхностью других твердых тел, что приводит к трудностям во время проведения эксперимента и к радиоактивному загрязнению. [c.8]

    Химическая адсорбция имеет место, когда молекулы адсорбата вступают в химическое взаимодействие с поверхностью адсорбента с образованием поверхностных химических соединений, но без образования новой объемной фазы. Она гораздо более избирательна и чувствительна к химической природе адсорбента и адсорбата, чем физическая адсорбция. Теплоты хемосорбции обычно высоки (100—200 кДж/моль). Хемосорбция нередко протекает довольно медленно, со скоростью, определяемой наличием некоторого активационного барьера, поэтому часто используют термин активированная адсорбция . При низких температурах скорость хемосорбции бывает так мала, что остается практически незаметной. Хемосорбция обычно необратима. [c.213]

    Физическая адсорбция не может являться лимитирующей стадией катализа, так как она не сопровождается активационным барьером и поэтому протекает мгновенно. Наоборот, активированная адсорбция (хемосорбция) сопровождается активационным барьером и поэтому протекает во времени с зависящей от температуры скоростью. Следовательно, она может являться определяющей стадией каталитического процесса. [c.308]

    Процесс адсорбции субстрата на катализаторе сопровождается убылью энергии Гиббса. В результате адсорбции возрастает упорядоченность системы и энергия уменьшается, что связано с выделением энергии и уменьшением энергии активации. Если имеет место хемосорбция, то специфичность катализа увеличивается. В результате хемосорбции молекулы переходят в активированное возбужденное состояние и иногда распадаются на атомы или радикалы, сорбированные поверхностью. [c.298]

    Хемосорбция, аналогично химической реакции, может протекать со значительной энергией активации, для нее характерна, следовательно, активированная адсорбция. [c.182]

    Анодный сдвиг потенциала в поверхностном слое металла и пассивность последнего могут быть обусловлены активированной адсорбцией (хемосорбцией) пассивирующих частиц, в первую очередь пассивирующих анионов, в особенности однозарядного атомного иона кислорода 0 (анион радикала ОН, образующегося из НаО или ОН при анодной поляризации). Адсорбция ионов кислорода уменьшает свободную энергикэ поверхностных ионов металла за счет вытеснения эквивалентного количества свободных поверхностных электронов металла, т. е. создает пассива-ционный барьер. Поскольку поверхностный электронный газ вырожден, вытесняются электроны, находящиеся на самых высоких электронных уровнях, и при этом снижается поверхностный уровень Ферми металла. Изменение свободной энергии поверхности при полном ее покрытии адсорбированным монослоем составляет 3,8-10 эрг на один электрон, что соответствует 2,37 эВ, или 54,6 ккал/г-экв. [c.311]

    Адсорбция твердыми поглотителями основана на избирательном извлечении вредных примесей из газа при помощи адсорбентов — твердых зернистых материалов, обладающих высокой уделЕ ной поверхностью. В газоочистке применяется как физическая адсорбция, основанная на ван-дер-ваальсовых силах, так и хемосорбция. В качестве адсорбентов для очистки газов применяют высокопористые материалы, чаще всего активированный уголь, силикагель и синтетические цеолиты (молекулярные сита). Для промышленной практики наиболее важны высокая поглотительная способность адсорбента, его адсорбционная активность, избирательность действия, термическая устойчивость, длительная служба без изменения структуры и свойств поверхности, легкость регенерации, малое гидравлическое сопротивление потоку газа. Активированные угли различных марок и силикагели уже давно и успешно применяются в промышленности. [c.235]

    Теоретическое рассмотрение кинетики гетерогенных процессов показало, что скорость реакции может контролироваться образованием заряженного активированного комплекса [22]. В этих случаях заряжение поверхности катализаторов под действием каких-либо факторов, например хемосорбции, должно оказывать существенное влияние на протекание реакции. Так, исследование [23] заряжения поверхности некоторых окисных катализаторов (ЗпОг—ЗЬгОб ЗпОа) при адсорбции смесей пропилена и кислорода показало различие во взаимном влиянии реагентов. Взаимное [c.29]

    Очевидно, скорость всего процесса определяется скоростью самого медленного этапа. Здесь различают два случая. Если диффузия исходных и конечных продуктов протекает быстрее, чем сама каталитическая реакция, то скорость процесса целиком зависит от состава и свойств поверхности катализатора. В этом случае говорят, что процесс протекает в кинетической области. Наоборот, если диффузия происходит медленнее, чем завершаются все превращения на поверхности катализатора,то общая скорость реакции будет определяться скоростью диффузии. В этом случае говорят, что процесс протекает в диффу.чионной области. Снижение энергии активации в гетерогенных каталитических реакциях достигается в результате сложных физико-химических процессов, характеризующих стадию активированной адсорбции (хемосорбции). [c.216]

    Как видно из рис. 22, при 132° скорость и величина адсорбции больше, чем при 100°. Это непонятное явление было объяснено Г. Тейлором. Он предложил для дифференциации между первичной и вторичной адсорбцией принять обратимость процесса и количество выделенного тепла. Вторичная, или обратимая, адсорбция имеет обычно малую теплоту адсорбции, т. е является физической, или вандерваальсовой, адсорбцией. Первичная, или необратимая, адсорбция показывает высокие теплоты адсорбции и большие значения энергии активации. Необратимая адсорбция, или хемосорбция, ускоряется с повышением температуры так же, как и обычные химические реакции. Поэтому она была названа активированной адсорбцией. Величину энергии активации Е для последней легко можно вычислить по скоростям адсорбции при разных температурах, т. е. по температурному коэффициенту. Если принять, что при температурах и Та скорости адсорбции будут соответственно и, и v. , то Е находят по обычной формуле  [c.117]

    Хемосорбция часто отождествляется с, так на.чываемой активированной адсорбцией, при которой скорость адсорбции определяется величтгной энергии активации. В последующем изложении мы покажем, что этот критерий для хемосорбции является неправильным. [c.21]

    Полимераналогичные реакции протекают без изменения строения макрорадикала за счет только функциональных групп. Продукты таких реакций внешне ничем не отличаются от исходных веществ. Благодаря этому их образование часто ускользает от внимания исследователей. Например, из активированного угля при хемосорбции кислорода получают высокомолекулярный оксид углерода =С = 0, а затем во влажной атмосфере его гидрат /ОН способный оводняться далее  [c.180]

    Особенно характерно различное действие температуры на физическую и химическую адсорбцию. Повышенная температура уменьшает физическую адсорбцию и, наоборот, способствует хемосорбции. В последнем случае это объясняется тем, что хемосорбция является химическим процессом, обычно требующим значительной энергии активации (ГО—30 ккал/молъ). Именно поэтому хемосорбция, как правило, является активированной адсорбцией. [c.103]

    Когда газ проникает внутрь твердого тела, могут наблюдаться два различных процесса газ просто растворяется в этом теле, образуя твердый раствор, или вступает с ним в химическое взаимодействие. Когда газ уплотняется на поверхности твердого тела, можно констатировать или слабое взаимодействие между газом и твердым телом, аналогичное явлению конденсации, или сильное взаимодействие типа химической реакции. Первое явление называется физической адсорбцией, второе — химической, или активированной, адсорбцией — хемосорбцией. Пример хемосорбции — адсорбция кислорода на поверхности металлов. Часто физическую адсорбцию называют ван-дер-ваальсовой (силы, обусловливающие физическую адсорбцию, открыл Ван-дер-Ваальс). [c.164]


Смотреть страницы где упоминается термин Хемосорбция активирования: [c.128]    [c.59]    [c.311]    [c.14]    [c.31]    [c.644]    [c.278]    [c.426]    [c.215]    [c.84]    [c.644]    [c.295]    [c.307]    [c.344]   
Адсорбция, удельная поверхность, пористость (1970) -- [ c.285 ]




ПОИСК





Смотрите так же термины и статьи:

Хемосорбция

Хемосорбция активированная



© 2025 chem21.info Реклама на сайте